设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:46:44
x){n۞Mrgض1HQ@g3]Цtgnrl)Ѯ_`gCO?];iϴg@ŚƮF`S6?hu|o:.'[ק3ud.:g
Ov/ۯ *Xki_\g ֵ
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
式子化成
(A+E)(A-3E)=-2E
由逆矩阵定义得满足AB=E则A,B互为逆矩阵
所以A+E可逆 逆矩阵为(A-3E)/(-2)
线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E
设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆
设n阶方阵A满足A^2-A-2E=0怎么证明A-E可逆?
设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n
设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1
线代证明题求解设A是n阶方阵,且满足R(E+A)+R(E-A)=n,试证:A满足A^2=E.
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵
设n 阶方阵A 满足A(2次方)-A+2E=0 ,证明:A-E 可逆,并求(A-E)-1次方
证明题 设N阶方阵A满足A²-2A-4E=0 证明A-3E 可逆
设n阶方阵A满足:A的平方—A—2E=0,证明A及A+2E都可逆,并求其逆.
设n阶方阵A满足A^2-3A+3E=0证明A-2E可逆,并求其逆矩阵?
设n阶方阵A满足A^2+2A-3E=0证明A+4E的特征值都不是零.
设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆
设A为2n+1阶方阵,且满足AA^T =E,|A|>0,证明行列式|A-E|=