设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 18:46:44
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
x){n۞Mrgض1HQ@g3]Цtgnrl)Ѯ_`gCO?];iϴg@ŚƮF`S6?hu|o:.'[ק3ud.:g Ov/ۯ*Xki_\gֵ

设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆

设N阶方阵满足A^2-2A-E=0,证明A+E可逆,并求其逆
式子化成
(A+E)(A-3E)=-2E
由逆矩阵定义得满足AB=E则A,B互为逆矩阵
所以A+E可逆 逆矩阵为(A-3E)/(-2)