证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 11:50:00
证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0
x){ٌg_Μag 4a,#Mm===/O["} /[VlcQ !,[ SbӶS6>Ů@[_Νbg u|dˆ=Oz>izOq׳,.H̳VT

证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0
证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0

证明极限(1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)的极限=0
1/(n^2+1/(n^2+1)+1/(n^2+2)+...+1/(n^2+n)
<1/n^2+1/n^2+1/n^2+...+1/n^2
=1/n->0
再由本身的非负性,有夹逼定理可证得极限是0