关于极限大一高数的几个问题1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 15:20:32
关于极限大一高数的几个问题1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|
关于极限大一高数的几个问题
1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|
关于极限大一高数的几个问题1.“对任意给定的&属于(0,1),总存在正整数N,当n>=N时,恒有|Xn-a|
1.(1)首先“|Xn-a|
1)&的意思是默认为小于任意给定的正数,反正就是无限趋近于零的意思,那么|Xn-a|<2&可以想象2&任然是小的不能再小的正数,也可能是为了好算把,当然是冲要条件了给定&的范围就是为了迷惑你的,实际它是于零无限接近的
2)对任意的e,总存在N=[1+1/(2e)](取整),使得当n>N时,总有
1/(n^2 -1)=1/2[1/(n-1)-1/(n+1)]<1/[2(n-1)]<...
全部展开
1)&的意思是默认为小于任意给定的正数,反正就是无限趋近于零的意思,那么|Xn-a|<2&可以想象2&任然是小的不能再小的正数,也可能是为了好算把,当然是冲要条件了给定&的范围就是为了迷惑你的,实际它是于零无限接近的
2)对任意的e,总存在N=[1+1/(2e)](取整),使得当n>N时,总有
1/(n^2 -1)=1/2[1/(n-1)-1/(n+1)]<1/[2(n-1)]
收起
1、
2&也对,&也对,只要能证明存在N,对任意n≥N,任意的δ>0,|Xn-a|<δ即可。
2、
(省去lim)
[ 1/(n^2-1) - 0 ] = 1/(n^2-1) ,
对任意的δ>0,限制|n|>1,
若满足|1/(n^2-1)|<δ,
解之,只需n>1/δ + 1即可,
对任意的δ>0,存在N=[1/δ + 1]+1,对...
全部展开
1、
2&也对,&也对,只要能证明存在N,对任意n≥N,任意的δ>0,|Xn-a|<δ即可。
2、
(省去lim)
[ 1/(n^2-1) - 0 ] = 1/(n^2-1) ,
对任意的δ>0,限制|n|>1,
若满足|1/(n^2-1)|<δ,
解之,只需n>1/δ + 1即可,
对任意的δ>0,存在N=[1/δ + 1]+1,对任意的n≥N,|Xn-a|<δ,
完成证明。
注:[x]表示对x取整,
例如0.3取1。56.6取57。
收起
1.给定的ε其实质为任意小的数,而2ε自然也是任意小的数,本题即考查极限定义中对任意小的ε的理解.---------------------其实100ε也是任意小. 2.对任意给定的ε属于(0,1),只需取正整数N = [根号X]+1 即可(其中X=1/ε+1).------之后用定义照套就行啦.