微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f(n)+f'(n)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:28:57
xj@E?Guܫ_1@
i7YZ(llBldՒ.fjbfL>hfxwޱCo!:@XCts*Z_"7[WPByl:A[!g l3)tC|b_ߘ?QO^+]zI+*o<5:ϾlDv.,C1 3zRyĚ,Ka {_CYCT@S%[ԯ4,hWJzVS4ym$p_
0
微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f(n)+f'(n)=0
微分中值定理的应用
设f(x)在[0,1]可导,且f(0)=f(1)=0.
证明存在n(0,1)使f(n)+f'(n)=0
微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f(n)+f'(n)=0
设T(x)=e^x*f(x)
则T'(x)=e^x*f(x)+e^x*f'(x)
由于T(0)=1*f(0)=0,T(1)=e*f(1)=0
所以,利用罗尔中值定理有T'(n)=0
也就是e^n*f(n)+e^n*f'(n)=0
由于e^n>0,所以,约去,最后得到
f(n)+f'(n)=0
结束
微分中值定理的应用设f(x)在[0,1]可导,且f(0)=f(1)=0.证明存在n(0,1)使f(n)+f'(n)=0
一道高数微分中值定理不等式证明题设x>0,证明:ln(1+x)>(arctanx)/(1+x).在用柯西定理证明的时候,令f(x)=(1+x)ln(1+x),g(x)=arctanx,但是x明明是大于0的,为什么可以对[f(x)-f(0)]/[g(x)-g(0)]应用柯西定理?x
关于微分中值定理与导数的应用设f(x)在[1,2]上有二阶导数,且f(2)=0,又F(x)=(x-1)^2 *f(x),证明:在区间(1,2)内至少存在一点§,使得F(§)=0
一道关于微分中值定理的证明题求解是一道关于微分中值定理的证明题,题目:设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(2)=3,f(3)=1,试证必存在ξ在(0,3)内,使f(ξ)=0.哪位大
微分中值定理应用设函数f(x)在区间[0,1]上连续,在(0,1)上可导,且f(1)=0证明:至少存在一点X属于(0,1),使f(x)的导数=-2f(X)/X
问一道关于微分中值定理的数学题设函数f(x)在[0,1]上连续,在区间(0,1)上可导,且有f(1)=2f(0),证明在(0,1)内至少存在一点m,使得(1+m)f'(m)=f(m)成立.要用微分中值定理来做,
微分中值定理的应用论文
高等数学微分中值定理的应用证明方程x^5+x-1=0只有一个根
拉格朗日中值定理:设f(x)=x的3次方,已知其在闭区间[0,1]上满足拉格朗日中值定理,求ξ
高数微分中值定理与导数的应用中的几题1.设f(x)在[0,1]上连续,在(0,1)中可导,且f(0)=f(1)=0,f(1/2)=1/2,证明:对任意的c∈(0,1),存在ξ∈(0,1)使得f'(ξ)=c2.已知f(x)在R内可导,且(x→∞)lim f'(x)=e,
一题高数题,微分中值定理那块的设f(x)在闭区间[1-,1]上连续,在开区间(-1,1)上可导,且|f`(x)|=MB.|f(x)|>MC.|f(x)|
微分中值定理的一道题设f(x)和g(x)都是可导函数,且|f'(x)|
mathematica 验证:拉格朗日微分中值定理对函数f(x)=sin(x)-x-1 在区间[ 0,1 ]上的正确性提示:用Solve函数
微分中值定理与导数的应用中的一道题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,试证明对任意给定的正数a及b,在(0,1)内存在不相等的x1,x2,使a/f‘(x1)+b/f’(x2)=a+b
数学分析微分中值定理设函数 f 在(0,a)可导 且 f (0+)=正无穷 证明 f ' 在x=0的右旁无下界希望大家能给我一个详细解答 谢谢!
题目(1):对函数f(x)=X^3,g(x)=X^2+1在区间[0,∏/2]上验证柯西中值定理的正确性.题目(2):应用拉格朗日微分中值定理证明下列不等式:当x>1时e^x>ex说明:X^3表示x的三次方..X^2表示x的二次方..e^X表示e的X
一个关于中值定理的题,设函数f(x)在[1,e]上连续,0
证明方程(x的5次方+x-1=0)只有一个正跟我是大一新生,现在只学到微分中值定理与导数的应用