用一架天平称3次,最多能从多少个乒乓球中找出仅有的一个因超重而不合格的乒乓球?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 05:53:49
用一架天平称3次,最多能从多少个乒乓球中找出仅有的一个因超重而不合格的乒乓球?
用一架天平称3次,最多能从多少个乒乓球中找出仅有的一个因超重而不合格的乒乓球?
用一架天平称3次,最多能从多少个乒乓球中找出仅有的一个因超重而不合格的乒乓球?
最后一次是称2个,共3个
第二次是称6个,共9个
第一次是称18个,共27个
所以最多27个
第一次:将27个分成3份,每份9个,天平上一边9个,另有9个不称,如果天平上的一样重,那么就是没称的9个中间有一个不合格;如果天平上有一边偏重,那么就是这边有一个不合格.
第二次:将含不合格的那9个分成3份,每份3个,与第一次一样,找出含不合格的3个;
第三次,将含不合格的3个球中的两个放在天平上,一样重就是没放在天平上的不合格,不一样就是重的那个不合格.
答案是12个。
步骤如下:
将12个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
如果第一次右重,则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边把9-11号放在右边。就是说,把1、6、7、8号放在左边,5、9、10、11号放在右边。
如果第二次右重,则坏球在没有触动的1、5号。如果是1号,则它比标准...
全部展开
答案是12个。
步骤如下:
将12个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
如果第一次右重,则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边把9-11号放在右边。就是说,把1、6、7、8号放在左边,5、9、10、11号放在右边。
如果第二次右重,则坏球在没有触动的1、5号。如果是1号,则它比标准球轻;如果是5号,则它比标准球重。
第三次将1号放在左边,2号放在右边。如果右重,则1号是坏球且比标准球轻;如果平衡,则5号是坏球且比标准球重;这次不可能左重。
如果第二次平衡,则坏球在被拿掉的2-4号,且比标准球轻。
第三次将2号放在左边,3号放在右边。如果右重,则2号球是坏球且比标准球轻;如果平衡,则4号球是坏球且比标准球轻;如果左重,则3号球是坏球且比标准球轻。
如果第二次左重,则坏球在拿到左边的6-8号,且比标准球重。
第三次将6号放在左边,7号放在右边。如果右重,则7号是坏球且比标准球重;如果平衡,则8号是坏球且比标准球重;如果左重,则6号是坏球且比标准球重。
如果第一次左重,则坏球同样在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边把9-11号放在右边。就是说,把1、6、7、8号放在左边,5、9、10、11号放在右边。
如果第二次右重,则坏球在拿到左边的6-8号,且比标准球轻。
第三次将6号放在左边,7号放在右边。如果右重,则6号是坏球且比标准球轻;如果平衡,则8号是坏球且比标准球轻;如果左重,则7号是坏球且比标准球轻。
如果第二次平衡,则坏球在被拿掉的2-4号,且比标准球重。
第三次将2号放在左边,3号放在右边。如果右重,则3号球是坏球且比标准球重;如果平衡,则4号球是坏球且比标准球重;如果左重,则2号球是坏球且比标准球重。
如果第二次左重,则坏球在没有触动的1、5号。如果是1号,则它比标准球重;如果是5号,则它比标准球轻。
第三次将1号放在左边,2号放在右边。如果左重,则5号是坏球且比标准球轻;如果平衡,则1号是坏球且比标准球重;这次不可能右重。
如果第一次平衡,则坏球在9-12号。
第二次将1-3号放在左边,9-11号放在右边。
如果第二次右重,则坏球在9-11号,且比标准球重。
第三次将9号放在左边,10号放在右边。如果右重,则10号球是坏球且比标准球重;如果平衡,则11号球是坏球且比标准球重;如果左重,则9号球是坏球且比标准球重。
如果第二次平衡,则坏球为12号。
第三次将1号放在左边,12号放在右边。如果右重,则12号是坏球且比标准球重;如果左重,则12号是坏球且比标准球轻;这次不可能平衡。
如果第二次左重,则坏球在9-11号,且比标准球轻。
第三次将9号放在左边,10号放在右边。如果右重,则9号是坏球且比标准球轻;如果平衡,则11号是坏球且比标准球轻;如果左重,则10号是坏球且比标准球轻。
如果你满意,请采纳我,好吗?谢谢~!祝你学习进步,天天开心!
收起