设f(x)=x^3-3/2(a+1)X^2+3ax+1,(2)若函数f(x)在区间(1,4)内单调递减,求a的取值范

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:31:04
设f(x)=x^3-3/2(a+1)X^2+3ax+1,(2)若函数f(x)在区间(1,4)内单调递减,求a的取值范
x){n_FmEFfDqbO>O{vEPDi[ީ/64l_ƦZO{ڰEOMR>m-/O٘"HlAx[c DM aiktg75QHAD; iLW~ON&rp6yv 

设f(x)=x^3-3/2(a+1)X^2+3ax+1,(2)若函数f(x)在区间(1,4)内单调递减,求a的取值范
设f(x)=x^3-3/2(a+1)X^2+3ax+1,(2)若函数f(x)在区间(1,4)内单调递减,求a的取值范

设f(x)=x^3-3/2(a+1)X^2+3ax+1,(2)若函数f(x)在区间(1,4)内单调递减,求a的取值范
由f'(x)=3x^2-3(a+1)x+3a=3(x-a)(x-1)=0, 得极值点x=1, a
若a>1, 则f(x)只在(1,a)单调减
若a