m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 14:23:55
xݒj0_˖R=n2*8HN61m{$U_aGS7B ?L>{AМVla!ѯ݅HrX[[fQ~>9WxrS mlyj{ຆQ5"uMadsx
-sn%d>9މ xJX"Xj)XS;b;H -`H'iZ X5uUa ~-,xk7+*n m"9ظ7sd`ۑo9E6kD1?]I.V'`,
m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
证明:设 k1(a1-a(n-r+1))+k2(a2-a(n-r+1))+……+k(n-r)(a(n-r)-a(n-r+1))=0.
则 k1a1+k2a2+...+k(n-r)a(n-r)+(-k1-k2-...-k(n-r))a(n-r+1)=0
由于 a1,a2,……,a(n-r+1) 线性无关
所以 k1=k2=...=k(n-r)=0.
所以 a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
注:并不需要向量是方程组的解的条件,只需线性无关即可.
m×n矩阵的秩为r,a1,a2,……,a(n-r+1)是非齐次线性方程组AX=B的n-r+1个线性无关的解向量,证明:a1-a(n-r+1),a2-a(n-r+1),……,a(n-r)-a(n-r+1)线性无关.
1.向量组 A:a1,a2,…,am 线性相关与 矩阵R (a1,a2,…,am )< m 等价怎么解释当m个n维向量的向量组k1a1+k2a2+ … +kmam=0中 m>n时,向量组a1,a2,...,am的秩
设m×n矩阵A的秩为r(a)=n-1,且a1,a2是齐次线性方程组ax=0的两个不同的解,则ax=0则ax=0的通解为x=A.ka1B.ka2C.k(a1+a2)D.k(a1-a2)答案是否为D C为什么又不可以呢
设a1,a2,...as均为n维列向量,A是m×n矩阵,若a1,a2…,as线性无关,则Aa1,Aa2,……,Aas线性无关是错的?
n阶非奇异矩阵A的列向量为a1,a2...an,n阶矩阵B的列向量为b1 b2...bn若b1=a1+a2...bn=an+a1,求r(B)...中间是b2=a2+a3 b3=a3+a4.bn=an+a1 答案是n为奇数时r(B)=n,n为偶数时r(B)=n-1实在是不理解为什么n为偶数是秩为n-1
矩阵秩的问题.a为4维列向量r(A)=r(a1,a2,a3,a4)=3a1,a2,a3线性相关如何推出 r(a1,a2,a3,a1+2a2+2a3)=2
关于矩阵的选择题1矩阵A属于R^(m*n)的秩为r(r
有一线性无关向量组:a1,a2,a3……as(1,2,3…s均为下标),A是m*n矩阵为什么当秩R(A)=n时,Aa1,Aa2…Aas是线性无关的
若a1,a2,a3……a n均为正数.设M=(a1+a2+………+a n-1)(a2+a3+……a n )若a1,a2,a3……a n均为正数.设M=(a1+a2+………+a n-1)(a2+a3+……a n ) N=(a2+a3+……a n-1)(a1+a2+……+a n)试比较M、N的大小
设n介可逆矩阵A的列向量组为a1,a1,a2,…,an,证明:对于任意n元向量b,向量组a1,a2,…,an,b都线性相关
线性代数有关矩阵的一个问题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
已知A为m*n阵B为n*m矩阵 证明r(AB)≦min{r(A),r(B)},r表示矩阵的秩
高等代数(线性代数)题证明:如果m*n矩阵A的秩为r,则它的任何s行组成的子矩阵A1的秩不小于r+s-m
设矩阵A=(a1,a2,a3,a4)的秩r(A)=3,且a1=a2+a3.设β=a1+a2+a3+a4,则线性方程组Ax=β的通解为
设m×n矩阵A的秩为r(a)=n-1,且a1,a2是齐次线性方程组ax=0的两个不同的解,则ax=0 则ax=0的通解为x=A.ka1B.k您解决过这个问题 为什么A B不对
设A为M乘N的矩阵,且A的秩R(A)=M
设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC
设n阶矩阵A=(a1,a2…,an)的行列式|A|≠0, A的前n-1列构成的n*(n-1)矩阵记为A1=(a1,a2…,an-1)问A1X有解否题目如上,求解题过程