若Cn=1/[(4n-3)(4n+1)],求数列{cn}的前n项和Tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:34:02
若Cn=1/[(4n-3)(4n+1)],求数列{cn}的前n项和Tn
x){ѽ9P?Z$OXHjj

若Cn=1/[(4n-3)(4n+1)],求数列{cn}的前n项和Tn
若Cn=1/[(4n-3)(4n+1)],求数列{cn}的前n项和Tn

若Cn=1/[(4n-3)(4n+1)],求数列{cn}的前n项和Tn
Cn=1/4*4/[(4n-3)(4n+1)]
=1/4*[(4n+1)-(4n-3)]/[(4n-3)(4n+1)]
=1/4*[(4n+1)/[(4n-3)(4n+1)]-(4n-3)/[(4n-3)(4n+1)]]
=1/4[1/(4n-3)-1/(4n+1)]
所以Tn=1/4*[1-1/5+1/5-1/9+……+1/(4n-3)-1/(4n+1)]
=1/4*[1-1/(4n+1)]
=n/(4n+1)

Cn=1/[(4n-3)(4n+1)]
=1/4*[1/(4n-3)-1/(4n+1)]
Tn=C1+C2+C3+...+Cn
=1/1*5+1/5*9+1/9*13+.....+1/[(4n-3)(4n+1)]
=1/4*[1-1/5]+1/4*[1/5-1/9]+1/4*[1/9-1/13]+.....+1/4*[1/(4n-3)-1/(4n+1)]
=1/4*[1-1/5+1/5-1/9+1/9-1/13+....+1/(4n-3)-1/(4n+1)]
=1/4*[1-1/(4n+1)]
=1/4*4n/(4n+1)
=n/(4n+1)