设liman=a,a≠0,limbn=∞,证limanbn=∞.∵当n趋向于无穷时,an趋向于a∴limanbn=alimbn=∞.不对的话请给出解法.
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 09:06:28
设liman=a,a≠0,limbn=∞,证limanbn=∞.∵当n趋向于无穷时,an趋向于a∴limanbn=alimbn=∞.不对的话请给出解法.
设liman=a,a≠0,limbn=∞,证limanbn=∞.
∵当n趋向于无穷时,an趋向于a
∴limanbn=alimbn=∞.
不对的话请给出解法.
设liman=a,a≠0,limbn=∞,证limanbn=∞.∵当n趋向于无穷时,an趋向于a∴limanbn=alimbn=∞.不对的话请给出解法.
不能,课本上的公式limanbn=liman*limbn仅在liman,limbn均为有限值的时候成立.此处需要从定义证明.
不能。
∵liman=a,a≠0,limbn=∞,
∴limanbn=alimbn=∞。
liman=a,a≠0
limanbn
= (liman)(limbn ) (∵liman exist)
-> ∞
这个作为本题的证法不是很妥当,但是实际用时这样写也不能算错。
建议这样做:
因为1/(a[n]b[n])≠0,并且lim1/(a[n]b[n])=lim1/a[n]*lim1/b[n]=1/a*0=0,所以lima[n]b[n]=∞.
无穷大的倒数是无穷小,无穷小(不取0值的)的倒数是无穷大,这个没有异议吧?一般教材都有证明的。...
全部展开
这个作为本题的证法不是很妥当,但是实际用时这样写也不能算错。
建议这样做:
因为1/(a[n]b[n])≠0,并且lim1/(a[n]b[n])=lim1/a[n]*lim1/b[n]=1/a*0=0,所以lima[n]b[n]=∞.
无穷大的倒数是无穷小,无穷小(不取0值的)的倒数是无穷大,这个没有异议吧?一般教材都有证明的。
收起
对的。
你这样想,当n很大是, an在a的某个邻域内,并且和0有一段距离。