正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:33:15
正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量
x]OPǿ 1@\Z |/ lS,xLӨt4ECJ a9W|=m^xdnf!yÏ8'v망H^K~+\}!*{1"_DK= )y[ZA mZn՞ל4m.c~l^:D.O+=g>k@$kpyIy|@}*ܓg#%5>]^.2=)Yzq%3F[cti.hk@uḖOro;V'mQHuARn7ܾ7~ x 㛾'b@2Ot1RQ|y-Jא!l_('

正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量
正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF
(1)求证:DF=BF,
(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量关系?并证明你的想法.

正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量
图上哪里有BE

因为那两个都是正方形,所以点FAC三点一定共线。所以连接AF,可证出第一问
第二问连接BE因为是旋转的所以角BAE和角DAG相等,再因为相邻两边也相等 所以三角形AEB AGD全等 就证明出两条线段恒等了

如图,正方形ABCD和正方形AEFG有一个公共顶点,把正方形AEFG绕点 旋转到如图所示的位置,连接DG求证:DG=BE 正方形ABCD和正方形AEFG有一个公共点A,把正方形AEFG绕点A旋转···正方形ABCD和正方形AEFG有一个公共点A,把正方形AEFG绕点A旋转60°,连接DG,BE,DG=BE吗? 如图,正方形ABCD和正方形AEFG有公共的顶点A,求证:BE=DG 正方形ABCD和正方形AEFG有一个公共点A将正方形AEFG绕点A旋转一定角度后连接DG,BE.那条线段石中与DG相等.为什么 已知:如图所示,正方形ABCD和正方形AEFG有公共点A,连结DG、BE,BE求证DG=BE 已知正方形ABCD和正方形AEFG有一个公共点A,点G,E分别在线段AD,AB上.(1)如图第一个,连结DF,BF,若将正方形AEFG饶点A顺时针方向旋转,判断命题:“在旋转过程中线段DF与BF的长始终相等.”是否正 正方形ABCD和正方形AEFG有一个公共点A,点G.E分别在线段AD.AB上连结DF、BF(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针旋转,连结DG.BE如图2所示,在旋转过程中请猜想线段DG.BE始终有什么数量 已知正方形ABCD和正方形AEFG有一个公共点A,若将正方形AEFG 绕点A按顺时针方向旋转,连接DG.在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?说明理由 已知正方形ABCD和正方形AEFG(初二数学)急! 已知,正方形ABCD中和正方形AEFG有公共点的顶点A,连BG,DE,M为DE的中点,连AM. ABCD和AEFG是正方形,求证:BE=DG 正方形ABCD与正方形AEFG具有公共顶点A,H为线段DE的中点,求证BG=2AH 正方形ABCD和正方形AEFG中,BE、DG交于H.求证:EB垂直GD 正方形ABCD和正方形AEFG中正方形ABCD和正方形AEFG中 这打错了 后面的没有 正方形ABCD与正方形AEFG有一个公共点A,点G,E分别在线段AD,AB上连接DF,BF,若将AEFG绕A点按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若不正确,请举反例说明 正方形ABCD中有一个小正方形AEFG,点E,G分别在AB,AD上,点F在正方形ABCD的内部.若AB=b,AE=a,把正方形AEFG绕点A旋转任意角度,在旋转过程中,三角形BDF的面积的最大值和最小值为 如图,14-2-13,已知正方形ABCD和正方形AEFG.试说明BE=DG. 正方形ABCD和正方形AEFG若BE=根号2那么CF等于 把边长为a的正方形ABCD和正方形AEFG如图1放置