设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 13:35:30
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a
x){n_F9+ubzڿu:O7?՗^o|6Y@@OZ_o~aӵ3bOv4

设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a
设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a

设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a
利用柯西中值定理,F(x)=f(x),G(x)=ln(x),即得.

设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a 设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n(f(n)的导数)ln(b/a 设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a) =n*(f(n)的导数)*l...设f(x)在[a,b]上可微,0小于a小于b.证明:在(a,b)内至少存在一点n.使得f(b)-f(a)=n*(f(n)的导数)*ln(b/a) 设函数f(x)在区间[a,b]上连续 大于0 小于0 等于0A.大于0 B.小于0 C.等于0 D.不确定 若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]上的定积分小...若f(x)在[a,b]上连续,在(a,b)内可导,|f'(x)|小于等于M,f(a)=0,求证:f(x)dx在[a,b]上的定积分小于等于(b-a)的平方乘 已知函数f(x)在R上是减函数,a,b∈R,且a+b小于等于0,则有A.f(a)+f(b)小于等于-f(a)-f(b)B.f(a)+f(b)大于等于-f(a)-f(b)c,f(a)+f(b)小于等于f(-a)+f(-b)D,f(a)+f(b)大于等于f(-a)+f(-b) 函数f(x)在(-∞,+∞)上是增函数 若a+b小于等于0,则有A f(a)+f(b) 小于等于 -f(a)-f(b)B f(a)+f(b) 大于等于 -f(a)-f(b)C f(a)+f(b) 小于等于 f(-a)+f(-b)d f(a)+f(b) 大于等于 f(-a)+f(-b) 已知f(x)在实数集R上是减函数,若a+b小于等于0,则下列正确的是A.f(a)+f(b)小于等于-[f(a)+f(b)]B.f(a)+f(b)小于等于f(-a)+f(-b)C.f(a)+f(b)大于等于-[f(a)+f(b)]D.f(a)+f(b)大于等于f(-a)+f(-b) 设f(x)、g(x)在[a,b]上可微,g'(x)不等于0,若a 设f(x)在(a,b)内可导,且f'(x)的绝对值小于等于M,证明:f(x)在(a,b)内有界 设f(x)在(a,b)内可导,且f'(x)的绝对值小于等于M,证明:f(x)在(a,b)内有界.最好是贴图哦,亲 设f(x)在(a,b)内可导,且f'(x)的绝对值小于等于M,证明:f(x)在(a,b)内有界 设函数f(x)对任意的实数x,y,有f(x+y)=F(x)+f(y),切当x大于0时,f(x)小于0,求f(x)在区间[a,b]上的最大值. 设f(x)在[a,b]上可微,f'(x)不等于0,0 设f(x)在[a,b]上连续,在(a,b)可导且f'(x)小于等于0,F(x)=(1/x-a)∫[0-->x]f(t)dt,证明:在(a,b)内有F'(x)小于等于零 设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]上单调增加 设函数f(x)定义在R上,f(4-x)=f(x),且当x大于等于2时,f(x)=ln(x-1),则有A f(1/3)小于f(3)小于f(1/2) B f(1/2) 小于f(3)小于f(1/3)C )f(1/2)小于f(1/3)小于f(3) C f(3)小于f(1/2)小于f(1/3 设f(x)在[a,b]二阶可导,且f''(x)