怎样证明等腰三角形底角平分线的交点一定在底边的垂直平分线上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 07:31:50
怎样证明等腰三角形底角平分线的交点一定在底边的垂直平分线上
xN@_h 3tj ڨF4a`SY+Wm4K~7Xރc0jA*%N^a: h`2:\煒9َ;K%~yӌ UI*IOD|#rUݔظbT"8̱t{Z7D]tUIt7 6IRDDKF!h'?Wk…$/|42W.` Ff_,wrV3D ̹0Ng?מ 7 1n]E !id9b*~3A{T1=b9u9ͨ/Us_F5y4b2 QF*fD8d]bY 3Ku~P٨E_,L>cߡv,[b} O6 "e[v^~ڽ{

怎样证明等腰三角形底角平分线的交点一定在底边的垂直平分线上
怎样证明等腰三角形底角平分线的交点一定在底边的垂直平分线上

怎样证明等腰三角形底角平分线的交点一定在底边的垂直平分线上
有等腰三角形abc,ab=ac,过bc做垂直平分线ad,作角abc的角平分线交ad与e,连接be.
因为点e在ad上,
所以eb=ec,
所以角ebc=角ecb,
因为角abe=角ebc=1/2角abc,角abc=角acb,
所以角ecb=1/2角acb,
即ec为角ecb的角平分线,
所以等腰三角形底角平分线的交点一定在底边的垂直平分线上

过这个交点做底边的垂线,证明垂足平分底边即可。

很简单啊。你画出等腰三角形ABC,底角是B、C,分别作B、C的角平分线交AC、AB于D、E两点,而这两条角平分线交于点O。你可以证明出三角形ABO全等于三角形ACO,所以AO是角A的平分线,你再整三角形ABF全等于三角形ACF(F是AO 与BC的交点),就可以得出结论了。...

全部展开

很简单啊。你画出等腰三角形ABC,底角是B、C,分别作B、C的角平分线交AC、AB于D、E两点,而这两条角平分线交于点O。你可以证明出三角形ABO全等于三角形ACO,所以AO是角A的平分线,你再整三角形ABF全等于三角形ACF(F是AO 与BC的交点),就可以得出结论了。

收起