秩为r的向量组,有没有r+ 1个线性无关向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:20:50
秩为r的向量组,有没有r+ 1个线性无关向量
x){|jy:a[t|i!,V0|c]5,6}U6IEj/ާ'<;y6j'xڿhө]6yvPl Mpv5>t ΆVCl$ںf

秩为r的向量组,有没有r+ 1个线性无关向量
秩为r的向量组,有没有r+ 1个线性无关向量

秩为r的向量组,有没有r+ 1个线性无关向量
寒,当然没有,什么叫秩啊?!

没有。向量组的秩=极大无关组所含向量个数。

秩为r的向量组,有没有r+ 1个线性无关向量 设n维向量a1,a2.aS的秩为r则A.向量组中任意r-1个向量都线性无关 B.向量组中任意r个向量均线性无关C.向量组中任意r+1个向量军线性无关 D,向量组中的向量个数必大于r 证明:秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组. 证明秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.如题 设a1,a2,^,a,为n维向量组,且秩 (a1,a2,^,a)=r,则()a该向量组中任意r个向量线性无关b该向量组中任意r=1个向量线性无关c该向量组存在唯一极大无关主dd该向量组有若干个极大无关主 向量组a1,a2...an的秩为r,则a1,a2...an中至少有一个r个向量的部分组线性无关这句话对吗 向量组a1,a2,a3-an的秩为r,则a1,a2,a3-an中至少有一个r个向量的部分组线性无关, 向量组的秩 和线性无关组A的秩为r向量组A有一最大无关组 ai1,ai2,...air; 则考虑ai1,ai2,...air ,B ,这个组向量r+1个向量,是相关的,因ai1,ai2,...air 线性无关,知B可用ai1,ai2,...air 线性表示.这个怎么理解 已知α1...αs的秩为r,证明α1.αs中任意r个线性无关向量构成极大无关组 线代 向量组的秩如果秩为r的向量组可以由它的r个向量线性表出 则这r个向量构成这向量组的一个极大线性无关组怎么证明啊?答案提示说,证明这r个向量的秩为r,就线性无关了求思路…… a中任意r个向量的线性无关部分与向量组a等价r为向量组的秩 怎么证明,在一个秩为r的向量组中,任意r个线性 无关的向量可构成一个...怎么证明,在一个秩为r的向量组中,任意r个线性 无关的向量可构成一个极大线性无关组.(如 果是用反证法的话,不要把 已知α1,α2,…αs的秩为r,证明:α1,α2,…αs中任意r个线性无关的向量都构成它的一极大线性无关组 我知道“秩为r的向量组中任意r个线性无关的向量都构成它的一个极大线性无关组.”那要是没有“线性无关”的这个条件,命题是不是就不成立了?能不能证明一下? 已知向量组a1,a2,...,as的秩为r.证明:a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组. 设向量组a1,a2.am的秩为r,则a1,a2,.am中任意r个线性无关的向量都构成它的极大线性无关组 若向量A中存在r个向量a1,a2...线性无关,A中任意r+1个向量均线性相关,则a1,a2...是向量A的极大线性无关组 n阶方阵的秩为r小于n,则A中至少还是至多有r个行向量线性无关?