已知f'(e^x)=xe^(-x),且f(1)=0,求f(x) 答案是1/2(lnx)^2,把e^已知f'(e^x)=xe^(-x),且f(1)=0,求f(x)答案是1/2(lnx)^2,把e^x化成了u. 为什么不能用复合函数的思路去做,f'(x)=f'(e^x)*(e^x)',这样结果成

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 17:50:02
已知f'(e^x)=xe^(-x),且f(1)=0,求f(x) 答案是1/2(lnx)^2,把e^已知f'(e^x)=xe^(-x),且f(1)=0,求f(x)答案是1/2(lnx)^2,把e^x化成了u. 为什么不能用复合函数的思路去做,f'(x)=f'(e^x)*(e^x)',这样结果成
xS[OA+ ؒ򢿣fggBR[CA!@M\l 1h/;s\|{NaMq˧ʐr<#E7,{n̏ e%\"4-2p×(:>{VdBQ)8փFs{3*q#6W Ρ--ͣUҿi|*\J(r ptM(Wi8.g䧔!~|/mulwCsp(V]g7xjdv,-8v`eo7'/31]L"2|!,L81^&Kt7ohܯ\7dY*d9)VTl&H6Ll8c%.1k#$ uCM8h\(t&mHU͑KJ#.$5 lcYLUs,+:-=Է"N^_ e onUVQlxLkk)Db2Tlcx\dsAGiOz,׍}*DZ⌹J#`gIٹ?HsmM' w;B`SNBL bG7ݶ8BS+V5 +؝ ;QXס GաA4Ŵmȥ; 

已知f'(e^x)=xe^(-x),且f(1)=0,求f(x) 答案是1/2(lnx)^2,把e^已知f'(e^x)=xe^(-x),且f(1)=0,求f(x)答案是1/2(lnx)^2,把e^x化成了u. 为什么不能用复合函数的思路去做,f'(x)=f'(e^x)*(e^x)',这样结果成
已知f'(e^x)=xe^(-x),且f(1)=0,求f(x) 答案是1/2(lnx)^2,把e^
已知f'(e^x)=xe^(-x),且f(1)=0,求f(x)
答案是1/2(lnx)^2,把e^x化成了u.
 
为什么不能用复合函数的思路去做,
f'(x)=f'(e^x)*(e^x)',这样结果成了1/2x^2-1/2…结果就不对,不对的原因是啥啊,

已知f'(e^x)=xe^(-x),且f(1)=0,求f(x) 答案是1/2(lnx)^2,把e^已知f'(e^x)=xe^(-x),且f(1)=0,求f(x)答案是1/2(lnx)^2,把e^x化成了u. 为什么不能用复合函数的思路去做,f'(x)=f'(e^x)*(e^x)',这样结果成
你后面的思路是利用 df/dx = df/dy*dy/dx,其中 y = g(x) = e^x,但是 df/dy 并不等于 f'(x)|x=y,而是要把 f(x) 写成 f(g^(-1)(y)),再对这个 y 的函数求微分.最后的结果是:f'(x)/g'(x)|x=g^(-1)(y).

解法如下