在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:16:10
在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.
在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An
的前n项和.
在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.
1,A(n+1)=2An+2^n,
两边除以2^n得
A(n+1)/2^n=An/2^(n-1)+1,
即B(n+1)=Bn +1,
Bn是等差数列.
2,B1=A1=1,
则Bn=n,
即An=n2^(n-1)
Sn=1+2*2^1+3*2^2+.+n2^(n-1)
2Sn=2+2*2^2+3*2^3+.+n2^n,
相减得
Sn=n2^n-(1+2^1+2^2+...+2^(n-1))
=n2^n-(1-2^n)/(1-2)
=(n-1)2^n +1.
bn = an/2^(n-1)
b
bn - b
= an/2^(n-1) - a
= (an - 2a
把 已知条件 a
bn - b
全部展开
bn = an/2^(n-1)
b
bn - b
= an/2^(n-1) - a
= (an - 2a
把 已知条件 a
bn - b
= 2^(n-1)/2^(n-1)
= 1
因此 bn 是等差数列
b1 = a1/2^(1-1) = 1/1 = 1
bn = n
--------------------
an/2^(n-1) = n
所以
an = n * 2^(n-1)
收起