在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:16:10
在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.
xTn1/!lH3=|HD4R4ϪAEɫ*1kVBm)V s=!iTM_=y* H`A*)V>:gGDVykq?ˤHel8,>2X<WU&|R{ko9H{u")Jo h)nTmD@%l[b]&n1f[i 6U-ɐ)5Wf2IG adLmm6*F)<8{`*r-` z 38@ojEY?RQw >% o, AOB6b5j(n9RJ6Q)C@1 2bz{ŸSߺ=Ү-C_=ą;V oKŋ`͘3̤AUl 'Z:ֱ%{]GUO

在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.
在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An
的前n项和.

在数列An中,A1=1,An+1=2An+2的n次方.(1)设Bn=An/2的(次方减1),证明:Bn是等差数列.(2)求数列An的前n项和.

1,A(n+1)=2An+2^n,
两边除以2^n得
A(n+1)/2^n=An/2^(n-1)+1,
即B(n+1)=Bn +1,
Bn是等差数列.
2,B1=A1=1,
则Bn=n,
即An=n2^(n-1)
Sn=1+2*2^1+3*2^2+.+n2^(n-1)
2Sn=2+2*2^2+3*2^3+.+n2^n,
相减得
Sn=n2^n-(1+2^1+2^2+...+2^(n-1))
=n2^n-(1-2^n)/(1-2)
=(n-1)2^n +1.

bn = an/2^(n-1)
b = a/2^(n-2)
bn - b
= an/2^(n-1) - a/2^(n-2)
= (an - 2a )/2^(n-1)
把 已知条件 a = 2an+2^n 即 an = 2a + 2^(n-1) 代入上式
bn - b ...

全部展开

bn = an/2^(n-1)
b = a/2^(n-2)
bn - b
= an/2^(n-1) - a/2^(n-2)
= (an - 2a )/2^(n-1)
把 已知条件 a = 2an+2^n 即 an = 2a + 2^(n-1) 代入上式
bn - b
= 2^(n-1)/2^(n-1)
= 1
因此 bn 是等差数列
b1 = a1/2^(1-1) = 1/1 = 1
bn = n
--------------------
an/2^(n-1) = n
所以
an = n * 2^(n-1)

收起