函数f(x)对任意的x,y含于R,f(x)+f(y)=f(x+y),当x>0时f(x)0时f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/05 11:00:28
xVAS@+$@vSg:=,Z ZF:TAGP }Me=B{-#{m4p Ȫ")~ R.\<0`'$< ^Q?{dC)̐մؾւ_R$JnT2R%RɒaGB_>CC]Xb %ɿ(x|Q,9|Pb wI9 4 /\t8{LspodMނ;' `k7.-ndVMsgFj\\ɱt`0_h LOB⬳H{ftOfnUC jer -( ^m)I5vI jӟ}0Nՙ B:Fnl:,@U9vk1ZU.=(# s!&}w&}RN1}` HM>]ҸpIʄ ]CT!3ls`g=;y"ΰYRfR\?&+-|f' :ld^a\@IHH33Ng,a0shfaH50D%VƊOz,4nTfݫ߁Tnޮh3)T} APƜK15dl~ | G 'b(Yg[G*W}PYWyIffas3 I 8ɫl۷@M1 7U_w!np33Ra5oL4em? |VFYŰǝ.S"˭
函数f(x)对任意的x,y含于R,f(x)+f(y)=f(x+y),当x>0时f(x)0时f(x) 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)是奇函数 定义在R上的函数f(x),对任意x,y∈R,豆油:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,判断f(x)的奇偶性 定义在R上的函数f(x),对任意的x、y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0,求证f(x)为偶函数 恒为正的函数f(x),对任意x,y属于R有f(x+y)=f(x)*f(y),如果x>0时,f(x) 已知函数f(x)对任意x,y属于R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x) 定义在R上的函数F(X),对任意函数x,y属于R都有f(x+y)=f(x)+f(y)+1成立 (1)F(x)=f(x)+1,求定义在R上的函数F(X),对任意函数x,y属于R都有f(x+y)=f(x)+f(y)+1成立(1)F(x)=f(x)+1, 证明函数F(x)增减性.函数F(x)的定义域为R,对任意x,y恒有F(x+y)=F(x)+F(y)成立,当x>0时F(x)>o 已知函数y=f(x)的定义域为R,对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0对任意x,y属于R均有f(x+y)=f(x)+f(y),且对任意x大于0,都有f(x)小于0,f(3)=-3.讨论函数f(x)的单调性急呐 已知函数f(x),对任意x,y属于R,都有f(x+y)=f(x)+f(y),则f(x)的奇偶性如何 证明题,设函数f(x)对任意x,y属于R设函数f(x)对任意x,y属于R,都有f(x+y)=f(x)+f(y),且x大于0时,f(x)小于0 1:求证f(x)是奇函数.2:判断f(x)在R上的单调性 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0(1):f(0)=1(2):判断函数的奇偶性 已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0 ⑴判断函数奇偶性已知f(x)是定义在R上的函数,对任意的x,y∈R,都有f(x+y)=f(x)+f(y),且x>0时有f(x)>0⑴判断函数 f(x)在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y)若f(k*3^x)+f(3^x-9^x-2) 已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);(2)当x>1是,f(x)>0.求证:(1)f(1)=0;(2)对任意的x属于R,都有f(1 已知定义域在R上的函数f(x)对任意实数x,y,恒有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0.求证f(0)=1 f(x)定义在R上 对任意x.y属于R 都有f(x+y)=f(x)+f(y)判断f(x)的奇偶性 已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y) 求f(0)已知定义在R上的单调函数y=f(x),当x1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y)(1) 求f(0);并写出适合条件的函数f(x)的