如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数:若发生变化,求出∠APB的取值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:01:09
xSNA}B7nV,+@,EHZQؒh
,(u\)w\s5Μd&f
,2pj$Mƛ=RMhX_6ny0)F~ڞҼʜ_Ԅ{XҒnkmh)ϻ]r^){ɒwKqy/рoqYoTh{YqH:g|jU6=o=۸vb$oqu#>!QD.Yy0ЫXn|/v?}d:ޟdsV6?#:"8x(^g P vnl"ΰ<E FM$!)
ѐieބ
9!ԣ2%rɢ(yf);i@tJ2CS9S9#BV`:QXC{hl|:;~c^"d=@+RJCS> ^ jdU7Xd DŽd$U&23x9^|.J먉S{*CB:=ީp~nl;e-4F
如图,∠MON=90&ord如图,∠MON=90º,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B如图,∠MON=90º,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B是ON上的任意一点,
如图,∠MON=50°,点A,B分别在射线ON,OM上移动,AC平分∠OAB,DB平分∠ABM,直线AC
已知,如图,OT是∠MON的平分线,点P、A、B分别在OT、ON、OM上,∠PAO=∠PBM.求证:PA=PB.
如图,OP平分∠MON,点A,B分别在OP,OM上,∠BOA=∠BAO,那么AB是否平行ON?没有了
已知,如图,OT是∠MON的平分线,点P,A,B分别在OT,ON,OM上,PA=PB.求证角PAO=角PBM
如图∠mon=70°如图,∠MON=70°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相交于点C.试猜想:∠ACB的大小是否随A、B的移动发生变化?如果保持不变,请给出
如图,∠MON=90o,在∠MON的内部有一个正方形AOCD,点A、C分别在射线OM、ON上,点B是ON上的任意一点,在∠MON的内部做正方形ABEF.(1) 连接DF,求证:∠ADF=90o;(2) 连接CE,猜一猜,∠ECN的度数等于多少?
如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的角平分线与△OBA的外角平分线交于点C.如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的角平分线与△OBA的外角平分线交于点C,试猜想,
已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=4 3 ,在∠MON的内部,△AOB的外部有一点P,且AP=B
如图7-X-10,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的平分线与∠OBA如图7-X-10,已知∠MON=90°,点A、B分别在射线OM、ON上移动,∠OAB的平分线与∠OBA处的外角平分线所在直线交于点C,试猜想:
如图,已知∠MON=90°,点A,B分别在射线OM,ON上移动,∠OAB的内角平分线与∠OBA 外角平分线所在直线交,求∠c
如图,∠MON=90°,点A、B分别在射线OM、ON上移动,BD是∠NBA的平分线,BD的反向延长线与∠BAO的平分线相交
如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数:若发生变化,求出∠APB的取值
(1) 如图,小明画了一个角∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变
(1)如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化范
(1)如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△AOB的角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化
如图,∠MON=80°,点A、B分别在射线OM、ON上移动,△ABO的外角平分线AC与BD交于点P.试问:随着点A、B位置的变化,∠APB的大小是否会变化?若保持不变,请求出∠APB的度数.若发生变化,求出变化范围
如图,A为∠MON内一点,试在OM,ON边上分别作出点B,C,使△ABC的周长最小,说明理由.