若对所有x>=0都有e^x>=ax^2+x+1,求a的取值范围用二阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 22:51:36
xNP_K 3mB$CcBk(& D7JI`[|sV}Ǫ θ3swR'C=z릦 _FߺfR"l|4/U=;5 v*[Eᯫb}BASlNUzìe"a6atQg&< =9i"NIx=e( N&_ )!/Wm"2 xhH.P+j6a,;sM=Vۡb>>yPY,^J=}FzT6k\"j$ț|Ɗ,dsz陜mJyncC
若对所有x>=0都有e^x>=ax^2+x+1,求a的取值范围用二阶导数 设函数f(x)=eˆx-eˆ(-x)若对所有x≥0都有f(xˆ2-1) 设函数f(x)=e^x-e^-x(1)证明f(x)的导数f'(x)>=2 (2)若对所有x≥0有f(x)≥ax,求a的取值范围 已知函数f(x)=e^x+ax-1.若对所有x≥0都有f(x)≥f(-x),求a的取值范围大神们帮帮忙 设函数f(x)=ex-e-x (Ⅰ)证明:f(x)的导数f'(x)≥2; (Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取(Ⅰ)f(x)的导数f'(x)=ex+e-x.由于ex+e-x≥2ex•e-x =2,故f'(x)≥2.(当且仅当x=0时 设导数f(x)=e^x-e^-x证明:(1)f(x)>=2x对所有的x>=0成立(2)若所有x>=0,都有f(x)>=ax,求a的取值范围. 设函数f(x)=e^x-e^-x.(1)证明f(x)的导数f‘(x)≥2 (2)若对所有x≥0都有f(x)≥ax,求a的取值范围.已知函数f(x)=x^3-ax^2-3x.(1)若f(x)在x∈[1,+∞)上是增函数,求实数a的取值范围. 已知函数f(x)=3ax^2-2ax+1对所有x属于R都有f(x)>0,求实数a的范围 设函数f(x)=e的x次方减e的负x次方.1.证明:f(x)的导数f′(x)≥2; 2.若对所有x≥0都有f(x)≥ax,求a的取值范围 证明:f(x)的导数f'(x)≥2设函数f(x)=e的x次方-e的-x次方.证明若对所有x≥0都有f(x)≥ax,求a的取值范围 设函数f(x)=e^x-e^-x若对所有x≥0都有f(x)≥ax求a的范围e^x表示e的x次方,这道题究竟应该怎样做?以前百度上解答的那个不对. 已知函数f(x)=e的x次方+ax-1(a属于R,且a为常数)(1)求函数f(x)的单调区间(2)若对所有X大于等于0都有f(x)大于等于f(-x),求a的取值范围. 已知函数f(x)=ax*x+2ax-2,若对任意实数想,都有f(x)已知函数f(x)=ax*x+2ax-2,若对任意实数x,都有f(x) 设函数f(x)=(a^2)lnx-x^2+ax,a>0,求f(x)单调区间,求所有实数a,使e-1≤f(x)≤e^2,对X∈[1,e]恒成立,注:e 设函数f(x)=(a^2)lnx-x^2+ax,a>0,求f(x)单调区间,求所有实数a,使e-1≤f(x)≤e^2,对X∈[1,e]恒成立,注:e 已知f(x)=2x lnx,g(x)=-x^2+ax-3(1)求函数f(x)的最小值 (2)若存在x∈(0,+∞),使f(x)≤g(x)成立,求实数a的取值范围(3)证明对一切x∈(0,+∞),都有f(x)>2(x/e^x - 2/e)成立 已知函数f(x)=xlnx ,若对所有x>=1,都有f(x)>=ax-1,求实数a的取值范围 已知函数f(x)=x*lnx. (1)求f(x)的最小值. (2)若对所有x>=1,都有f(x)>=ax-1,求实数a的取值范围.