弧形面积计算题,已知弧形ABC,其弦长68,高是12,求弧形ABC面积.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:26:14
弧形面积计算题,已知弧形ABC,其弦长68,高是12,求弧形ABC面积.
弧形面积计算题,已知弧形ABC,其弦长68,高是12,求弧形ABC面积.
弧形面积计算题,已知弧形ABC,其弦长68,高是12,求弧形ABC面积.
设O为弧AB所在圆的圆心,CD为弓形的高,连接OA,设半径为R
则根据圆的性质可证O、D、C在一直线上,AD=BD,OD⊥AB
在直角三角形AOD中根据勾股定理得:
AD^2+OD^2=OA^2
即:34^2+(R-12)^2=R^2
解得:R≈54.1667
因为sin∠AOD=AD/OA≈34/54.1667≈0.62769
所以∠AOD≈38.8798998°
所以∠AOB≈77.7597996°
所以
S弓形=S扇形-S△AOB
≈77.7597996*π*54.1667^2/360-68*(54.1667-12)/2
≈1990.98163-1433.6678
≈557.31383
江苏吴云超祝你新年快乐
68*12/2=408
很简单啊
先利用高和弦长求出角度和半径
r*r=34*34+12*12
theta=2*arctan(34/12)
然后利用面积公式=theta*r*r
求解该过程: r2=34^2+34^2
r2 =
2312
theta=atan(34/12)//atan是求解arctan
theta =
...
全部展开
很简单啊
先利用高和弦长求出角度和半径
r*r=34*34+12*12
theta=2*arctan(34/12)
然后利用面积公式=theta*r*r
求解该过程: r2=34^2+34^2
r2 =
2312
theta=atan(34/12)//atan是求解arctan
theta =
1.2315
s=r*r*theta
s =
2.8472e+003
就行了
PS:求解过程是MATLAB求解的
收起