求解函数极限,不用洛必达法则,lim x趋于e (lnx-1)/(x-e)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:11:04
求解函数极限,不用洛必达法则,lim x趋于e (lnx-1)/(x-e)=
x){O>ټƗ3'<|ʊg[f?b߾g>혩Pb[]} tUөdWY6IE5PΆnܼi>tO?X amN^~Mm ] _MZS* k?jXD[:^o> [ӢI6&V,6 za l @X

求解函数极限,不用洛必达法则,lim x趋于e (lnx-1)/(x-e)=
求解函数极限,不用洛必达法则,lim x趋于e (lnx-1)/(x-e)=

求解函数极限,不用洛必达法则,lim x趋于e (lnx-1)/(x-e)=
泰勒展开式
lnx在x=e展开
lnx=lne+(1/e)/1!*(x-e)+(-1/e²)/2!*(x-e)²+……
所以原式=lim[(1/e)/1!*(x-e)+(-1/e²)/2!*(x-e)²+……]/(x-e)
=lim[(1/e)/1!+(-1/e²)/2!*(x-e)+……]
=1/e