用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)还有一题:给定任意正整数n,设d(n)为n的约数个数,证明d(n)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:41:06
用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)还有一题:给定任意正整数n,设d(n)为n的约数个数,证明d(n)
xUNP^Bh΄ 33ِ81MlAР ໐r+kOmؖfYB9}9|ڨb\_7Dư{Uc}Ї Fn_dNH{cj_-Z53U|^BkucTC>bI{KFh _km߀`Rױm5+?SYu,Y$aK(bRoD$ލ!WDgxX9gc刃 @CIHnSTQBq [jd[`E,1 0<[gILD6}_:&&\"AE `)&Y9f1ЉBO +VkbRUd 0V'F, +@uа|{LO HHlz`$N>#+!eoCBƃB3Qŕ$ZPXD.kP㌇Q}΁(@о0 чU8 5@RA5آhh^ VV &4{s?(0?foQiIDWB!r^0y܇^\h|JkA:;\j\B%S+;-6

用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)还有一题:给定任意正整数n,设d(n)为n的约数个数,证明d(n)
用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)
还有一题:
给定任意正整数n,设d(n)为n的约数个数,证明d(n)

用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)还有一题:给定任意正整数n,设d(n)为n的约数个数,证明d(n)
证明:
(1)n=1时,3^(6n)-2^(6n) =3^6-2^6=665=19*35,命题成立
(2)假设n=k时命题成立,即
35能整除3^(6k)-2^(6k)
即3^(6k)-2^(6k)=35m (m∈Z+)
则n=k+1时
3^(6n)-2^(6n)
=3^(6k+6)-2^(6k+6)
=(3^6)*3^(6k)-(2^6)*2^(6k)
=64*[3^(6k)-2^(6k)]+(729-64)*3^(6k)
=64*[3^(6k)-2^(6k)]+665*3^(6k)
=64*35m+19*35*3^(6k)
=35*[64m+19*3^(6k)]
即n=k+1时,35能整除3^(6n)-2^(6n)
综合(1)(2)由数学归纳法知:
对于一切正整数n,35能整除3^(6n)-2^(6n)
===============
给定任意正整数n,设d(n)为n的约数个数,证明d(n)<2√n
证明:
若n存在一个约数a<√n
则n/a=b是n的另一个约数,且b>√n
显然a,b是一一对应的
∵a<√n
∴a的个数<√n
∴b的个数<√n
∴d(n)=a的个数+b的个数<2√n

假设n=k时成立 得3^(6k)-2^(6k)能被35整除
3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)
=(3^6-1)3^(6k)-(2^6-1)*2^(6k)
=728*3^(6k)-63*2^(6k)
=63*(3^(6k)-2^(6k))+665*3^(6k)
因为665/35=19 所以 3^(6k+1)-2^(6k+1)-3^...

全部展开

假设n=k时成立 得3^(6k)-2^(6k)能被35整除
3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)
=(3^6-1)3^(6k)-(2^6-1)*2^(6k)
=728*3^(6k)-63*2^(6k)
=63*(3^(6k)-2^(6k))+665*3^(6k)
因为665/35=19 所以 3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)可以被35整除
那么由3^(6k+1)-2^(6k+1)-3^(6k)+2^(6k)+3^(6k)-2^(6k)
=3^(6k+1)-2^(6k+1)
可得到
3^(6k+1)-2^(6k+1)
必定可以被35整除
当n=1时3^(6n)-2^(6n)能被35整除
所以 证明完成

收起

打开msl

用(第一)数学归纳法证明对于一切正整数n,35能整除3^(6n)-2^(6n)还有一题:给定任意正整数n,设d(n)为n的约数个数,证明d(n) 用数学归纳法证明:An2>2n+1对一切正整数n都成立. 1.证明:对大于2的一切正整数n,下列不等式都成立.(1+2+3+...+n)(1+1/2+1/3+...+1/n)≥n^2+n+12.用数学归纳法证明:对于任意大于1的正整数n.不等式1/2^2+1/3^2+...+1/n^2<(n-1)/n都成立. 用数学归纳法证明对于任意大于1的正整数n,不等式1/(2^2)+1/(3^2)+…+1/(n^2) 小于(n-1)/n 困难的数学归纳法题利用数学归纳法,证明对于所有正整数n,(3n-1)(4^n)+1可被9整除 用数学归纳法证明:对于任意大于1的正整数n,不等式1/(2*2) +1/(3*3).+1/(n*n) 用数学归纳法证明,对于任意大于1的正整数n,不等式1/2^2+1/3^3+...+1/n^n 用数学归纳法证明:1²+2²+...+n²=n(n+1)(2n+1)/6 (n是正整数)请用数学归纳法证明, 若不等式1/(n+1)+1/(n+2)+1/(n+3)+.+1/(3n+1)>a/24对一切正整数 都成立,求正整数a的最大值,并证明.用数学归纳法 求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立(1+2+3+…+n)(1+1/2+1/3+…+1/n)大于等于n的平方+n-1 请用数学归纳法证明对任意正整数n有|sin(nx)|=n|sinx| 用数学归纳法证明不等式:1/n+1/(n+1)+1/(n+2)+.+1/n^2>1(n属于正整数且n>1)数学归纳法哦~~~~ 1.用数学归纳法证明.对于一切n属于N*,都有(1^2+1)+(2^2+2)+…+(n^2+n)=n(n+1)(n+2)/3 利用数学归纳法,证明对于所有正整数n, 2^(2n+1)-9n²+3n-2能被54整除.很急啊,谢谢了! 有关数学归纳法的题目用数学归纳法证明: 4的2n+1次方+3的n+2次方能被13整除,其中n属于正整数 用数学归纳法证明不等式 2^n 用数学归纳法证明ln(n+1) 用数学归纳法证明1+n/2