一道难题,已知xyz=1求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:46:38
一道难题,已知xyz=1求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值
xQJ@wLXak_$bXA)R)bL43&< $.lYon! e$J}U3! DZ@*"-,Q,}i//(eԳ>Գ}gIɘGK꘣~QyH'MOd(\;ψjwh0aV"jDoPEIW~6|lQx  \wA,-{Q}꩙$:G量}>u~?

一道难题,已知xyz=1求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值
一道难题,
已知xyz=1
求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值

一道难题,已知xyz=1求x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)的值
xyz=1
x/(xy+x+1)+y/(yz+y+1)+z/(zx+z+1)将x/(xy+x+1)中的1换为xyz得:
=x/(xy+x+xyz)+y/(yz+y+1)+z/(zx+z+1)
=1/(yz+y+1)+y/(yz+y+1)+z/(zx+z+1)
=(1+y)/(yz+y+1)+z/(zx+z+1)将(1+y)/(yz+y+1)中的1换为xyz得:
=(xyz+y)/(yz+y+xyz)+z/(zx+z+1)
=(xz+1)/(zx+z+1)+z/(zx+z+1)
=(zx+z+1)/(zx+z+1)
=1

解:xyz=1 x/(xy x 1) y/(yz y 1) z/(zx z 1)将x/(xy x 1)中的1换为xyz得: =x/(xy x xyz) y/(yz y 1) z/(zx z 1) =1/(yz y 1) y/(yz y 1) z/(zx z 1) =(1 y)/(yz y 1) z/(zx z 1)将(1 y)/(yz y 1)中的1换为xyz得: =(xyz y)/(yz y xyz) z/(zx z 1) =(xz 1)/(zx z 1) z/(zx z 1) =(zx z 1)/(zx z 1) =1 耐心点,祝你理解