g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/05 03:27:57
g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH
xN@_` 6ta$tftvWchA+ 1jDo D1(D&d/iΙߜo*Lj"l޴-.:yg++&:yڶE,>?|puF/lWĢ}#=o-,-|}LY7=wL<>-`NvhR++ TK5o?n4oُn05 ! (B!@P -T@X++HḈbd %b_9";AIFbA]P_k,(;@ HMD7AŌNg*7cNK {PCEcXM#OCGܔK.܇rŌ?(og;aլNX u[j, XW (w!]阍OMYl!ְoAYcq0* —[s[]3! Z)Vms/ًTR0xſ

g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH
g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH
 

g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH

证明:延长AD到E,使DE=BH,连接CE.
∵DE=BH,CD=CB,∠CDE=∠B=90°.
∴⊿CDE≌⊿CBH(SAS),CE=CH;∠DCE=∠BCH.
∴∠ECH=∠DCB=90°;又∠GCH=45°.
∴∠GCE=∠GCH=45°.
∵CE=CH,∠GCE=∠GCH=45°,CG=CG.
∴⊿GCE≌⊿GCH(SAS),GE=GH.
即DG+DE=DG+BH=GH.(等量代换)

g,h分别是正方形abcd的边ad,ab上的点,<GCH=45度,证明DG+BH=GH ABCD与EFGH都是正方形,E,F,G,H分别是AD,AB,BC,DB的中点,BC长30cm.求阴影部分的面积. E,F,分别是正方形ABCD的边AB,BC上的点,EF∥AC,G在AD的延长线上,且AG=AD,GE的延长线交DF于H.求HA=DA. 正方形ABCD中,E、F分别是AD,CD上的点,且满足AF=DE,G、H、P、Q分别是AB,BE,EF,AF的中点,判断四边形GHPQ .如图 在梯形ABCD中,AD//BC,AB=CD,E,F,G,H分别是各边的中点.求证:四边形EFGH是菱形.在梯形ABCD中,AD//BC,AB=CD,E,F,G,H分别是各边的中点.(1)求证:四边形EFGH是菱形.(2)若四边形ABCD是矩形,E,F,G,H仍是各边的中点,则 如图,点E、F、G、H分别是正方形ABCD各边的中点,点I、J、K、L分别是四边形EFGH各边的中点,点M、N分别是IJ、IL的中点,若图中阴影部分的面积是10,则AB的长是如图,点E、F、G、H分别是正方形ABCD各 E,H分别是空间四边形ABCD的边AB,AD的中点,平面阿发过EH分别叫BC,CD于F,G 求证 EH//FG 已知四边形ABCD中,E、F、G、H分别是边AB、BC、CD、AD的中点.求证:四边形EFGH是平行四边形. 在正方形ABCD-A1B1C1D1中,E,F,G,H,M,N分别是正方形的棱A1A,AB,BC,CC1,C1D1,D1A1的中点,试证:E,F,G,H...在正方形ABCD-A1B1C1D1中,E,F,G,H,M,N分别是正方形的棱A1A,AB,BC,CC1,C1D1,D1A1的中点,试证:E,F,G,H,M,N六点共面 在正方形ABCD-A1B1C1D1中,E,F,G,H,M,N分别是正方形的棱A1A,AB,BC,CC1,C1D1,D1A1的中点,试证:E,F,G,H...在正方形ABCD-A1B1C1D1中,E,F,G,H,M,N分别是正方形的棱A1A,AB,BC,CC1,C1D1,D1A1的中点,试证:E,F,G,H,M,N六点共面 已知空间四边形ABCD,AB=AD,CB=CD,且E.F.G.H分别是AD.AB.CB.CD的中点,求证四边形EFGH为矩形 如图,E,F分别是四边形ABCD的边CB,AD中点,G,H分别是对角线BD,AC中点.试说明:(1)EF与GH互相平分(2)当AB,CD满足什么条件时,EGFH为菱形,WHY?(3)EGFH可能为正方形吗?如果有,请说明AB,AC满足什么条 如图,正方形ABCD的边长为12,P是AB上任意一点,M、N、I、H分别是BC、AD上的三等分点、E、F、G是CD上的四等分点,求阴影部分面积. 如图,正方形ABCD的边长为12,P是AB上任意一点,M、N、I、H分别是BC、AD上的三等分点、E、F、G是CD上的四等分点,求阴影部分面积. 正方形ABCD,E,F分别是AB,AD的延长线上一点,且AE=AF=AC,EF交BC于G,交AC于K,交CD于H,求证:EG=GC=CH=HF 点e、f分别是正方形abcd中ab和bc的中点,连接af和de相交于点g,gh⊥ad于点h求证af垂直de,cg=cd 四边形ABCD中,AD平行于BC,AB=CD,点E,F,G,H分别是AD,BD,BC,AC的中点,求证:四边形EFGH是菱形 正方形在正方形ABCD中,E、F分别是AB、BC的中点,CE、DF交于G,求证AD=AG