设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:42:02
设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围
x){n;Mݠd<[G{0N et=8ɮlj?mlt'w?k{d9P@PٜNGgO{ڰEO[l3 lMx

设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围
设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围

设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围
利用已知式,
有A[n+1]=3^n-2A[n]>A[n]
整理,得到A[n]

设A0常数,且An=3∧(n–1)–2An–1(n属于自然数)假设对任意n大于等于1,有An大于An–1,求Ao取值范围 设a0为常数,且an=3n-1-2an-1(nN+).求an 设A0为常数,且An=3^(n-1)-2A(n-1) (n∈非0自然数)(1)A0不等于1/5,求证数列{an-3a(n-1)}是等比数列(2)A0=1/5,求an(n∈非0自然数) 设a0为常数,且an=3n-1-2an-1(n∈N*)证明对任意n≥1,an=1/5[3n+(-1)n-12n]+(-1)n-12na0假设对任意n≥1,有an>an-1,求a0的取值范围设A0为常数,且An=3^(n-1)-2A(n-1)(n∈N*)证明对任意n≥1,An=0.2[3^n+(-1)^(n-1)2^n]+(-1)^(n-1)2 设a0为常数,且an=3^n-1-2an-1(n∈N).证明对任意n≥1不好意思,题目应该是:设a0为常数,且an=3^n-1-2an-1(n∈N).证明对任意n≥1,an=1/5[3^n+(-1)^n-1·2^n]+(-1)^n·2^n·a0 数列{an}满足a0是常数,an=3(n-1)-2a(n-1),求an 数列λ法求通项公式如:已知A0为常数,n∈N时,An=3∧(n-1)-2A(n-1)求{An}? 设a0为常数,数列{an}的通项公式为an=1/5{3^n+[(-1)^(n-1)]*2^n}+[(-1)^n]*(2^n)*a0,若对任意n属于正整数,不等于an大于a(n-1)很成立,求a0的取值范围 an=3^(n-1)-2a(n-1) a0为常数 求an的通项公式 为什么两边加上3^n/5 设a0为常数,an=3^(n-1)-2an-1若a0=1/5求an通项an-1是下标 表示第n-1项,答案是1/5*3^n 设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,证明数列{a(n+2)-an}是常数数列设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……证明数列{a(n+2)-an}(n≥2)是常数数列 设正整数列a0,a1,...,an,...满足√【an*a(n-2)】-√【a(n-1)*a(n-2)】=2a(n-1)(n>=2)且a0=a1=1,则{an}的通项公式为?能力有限题目叙述不清见谅 【】中是整个根号下的 已知a,b,为常数,且an=3(n-1)次方-2a(n-1)(1)设bn=an/3的n次方-1/5,证明数列bn为等比数列.(2)求an 已知a,b,为常数,且an=3(n-1)次方-2a(n-1)(1)设bn=an/3的n次方-1/5,证明数列bn为等比数列.(2)求an 已知数列{an}中,a0=2,a1=3,a2=6,且当n≥3时,有an=(n+4)an-1 -4nan-2 +(4n-8)an-3 .(1¬)设数列{bn }满足bn=an –nan-1,n属于N*,证明数列{bn+1-2bn}为等比数列,并求数列{bn}的通向公式;(2)记n×(n-1)×…×2 设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.求{an}的通项公式.设正数列a0,a1,a2,…,an,…满足 (n≥2)且a0=a1=1.1.证明√(an/an-1)成等差数列2.求{an}的通项公式. 正数列a0,a1,a2.an...满足√ana(n-2)—√a(n-1)a(n-2)=2a(n-1) (n≥2) ,且a0=a1=1,求通项. 1 已知函数f(x)的导函数为g(x),且满足f(x)=3x²+2x*g(2).则g(5)等于2 设(x²+2x-2)ⁿ(n=6)=a0+a1(x+2)+a2(x+2)²+······+a12(x+2)¹²,其中a0 a1 a2 ······· a12为实常数.则a0+a1+2a