已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 13:40:08
已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE
xMk@1X/K vҮu/6zrB]CpImI44mhe7K*Y)+!= 333%o%-><0p8_}NAQM> ! ˇi5(Ln%y}p_/ݧϫYV9_k4eꍺ_~Qkܫk:$"KBzrՖTT% ZBRQwjċ/OIy O<܉ESEYDS4D-I"E;qqJLi"aI{裡 >ǧ6˧rp}љ T-M3w9fL HR^7{ &z=76cD&0S?g f1s/ $HݴMTR]Y2:Okq&|g 9

已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE
已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE

已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE
连GE、GD,
三角形CBD和BCE全等(角角边),
CD=BE,
三角形BEG和CDG全等(边角边),
EG=GD,
三角形GED等腰,F是底边ED的中点,
FG⊥DE
BD和CE是两个腰上的高,△BCE和△BCD是RT△,连结EG和DG,G是二直角三角形斜边BC的中点,EG=BC/2,DG=BC/2,EG=DG,三角形EDG是等腰三角形,而F是ED的中点,FG是其对称轴,三线合一,故FG⊥DE

已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE 已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE 一道关于中位线的数学几何题已知BD,CE使△ABC的高,F,G分别为DE,BC的中点.求证:FG⊥DE 如图,已知BD,CE是△ABC的中线,延长BD至F,使DF=BD,延长CE到G,使EG=CE,求证:G、A、F三点在一直线. BD,CE是△ABC的边AC,AB上的高,G.F分别为BC,ED的中点,求证GF⊥ED 初二几何题,如图所示,CE、BD是三角形ABC的中线,分别延长BD和CE到F和G,且使DF=BD,CE=CE,试说明G、A、F在同一直线上. 已知三角形ABC,BD,CE是高.G F分别是BC,DE的中点.求证:FG垂直DE 如图,已知BD、CE是△ABC的高,F是ED的中点,G是BC的中点,求证:GF⊥ED 已知 如图 △ABC中 BD,CE是高,G,F分别是BC,DE中点,试判断FG与DE的位置关系,并加以证明. 已知如图在三角形ABC中,AB=AC,BD,CE分别为AC,AB边上的中线,AF⊥BD于F,AG⊥CE于G已知如图在三角形ABC中,AB=AC,BD、CE分别为AC、AB边上的中线,AF⊥BD于F,AG⊥CE于G求证:AF=AG 如图,已知BD、CE分别是△ABC的∠B、∠C的外角平分线AF⊥BD,AG⊥CE,F、G分别为垂足.求证FG‖BC 已知 如图bd ce是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,试说明AG与AF的关系,说明理由 已知点D,E分别在△ABC的边AB,AC的外侧,且∠ABD=∠ACE.过点A分别作BD,CE的垂线交BD、CE,F、G、P是AB、AC、BC的中点.已知点D,E分别在△ABC的边AB,AC的外侧,且∠ABD=∠ACE.过点A分别作BD,CE的垂线交BD、CE,F、 已知BD,CE是△ABC的高线,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB,则AG⊥AF,说明理由.(详细一点) 已知:BD、CE是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB.求证:AG⊥AF. 已知bd,ce是△abc的高,点f在bd上,bf=ac,点g在ce的延长线上,cg=ae,则ag⊥af,请说明理由 已知:CE,BD是△ABC的两条高,F,G为BC,ED中点求证FG⊥DE BD、CE是△ABC的中线,延长BD至F,使DF=BD,延长CE到G,使EG=CE,求证:G、A、F三点在一直线