求y''+y'^2=1的通解,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:24:47
求y''+y'^2=1的通解,
x){R]]R= ^,_cTSNG[!rjʆֶ v))0aR^Z6hCچ@Clj{4 ȷ5K8  gg3?_iG;MݠIXm S4*i:8T0V6EcK8Ub7Xa @5@E P6P9ƥM12h9F6Ϧ>l+:$ف5==

求y''+y'^2=1的通解,
求y''+y'^2=1的通解,

求y''+y'^2=1的通解,
∵y''+y'²=1 ==>dy'/dx=1-y'²
==>dy'/(1-y'²)=dx
==>[1/(1+y')+1/(1-y')]dy'=2dx
==>ln│(1+y')/(1-y')│=2x+ln│C1│ (C1是积分常数)
==>(1+y')/(1-y')=C1e^(2x)
==>y'=[C1e^(2x)-1]/[C1e^(2x)+1]
∴y=∫{[C1e^(2x)-1]/[C1e^(2x)+1]}dx
=∫{1-2/[C1e^(2x)+1]}dx
=x+∫{e^(-2x)/[C1+e^(-2x)]}d(-2x)
=x+∫{1/[C1+e^(-2x)]}d[C1+e^(-2x)]
=x+ln│C1+e^(-2x)│+C2 (C2是积分常数)
故原方程的通解是y=x+ln│C1+e^(-2x)│+C2 (C1,C2是积分常数).