如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.(1)求抛物线的函数关系式;(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 09:29:04
如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.(1)求抛物线的函数关系式;(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部
xn@_;[EM{i鑾BX EpIni *51Q4`w ;_R8p@=;V W V^>g~([ٯmuEeJZJ9NLMcxrb^0 -)NN^/1p?uqe o&b2zS'Oz|tŝ& OAQ)P/>Ji+5dqt={/gS?6 ?P2)h[dMphg|Cgђ[}YAFZ"}f}eAQʼDGdBw`v/ 0U= }Zz+"D]=~B/#d\";d5_ `}f_M~QC6`^^$[n¬/7=]t,N_T!߲9d^/2 7W

如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.(1)求抛物线的函数关系式;(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部
如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.
(1)求抛物线的函数关系式;
(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部分,求k的值;
(3)将△AOC沿x轴翻折得到△AOC′,问:是否存在这样的点P,以P为位似中心,将△AOC′放大为原来的两倍后得到△EFG(即△EFG∽△AOC′,且相似比为2),使得点E、G恰好在抛物线上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
第3小题求详解

如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.(1)求抛物线的函数关系式;(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部
我也不会

已知:如图,抛物线y=ax²-2ax+c【a≠0】与y轴交于点c【0,4】,与x轴交于点a、b,已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的 如图+抛物线所示y=ax²+bx-4与x轴交于点A(4,0),B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点1.(2012•济宁)如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB 如图,已知抛物线y=ax^2+bx+c与x轴交于AB两点,与y轴交于点C,D为OC的中点如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比 如图1 抛物线y=ax2+bx+c的顶点为(1,4)交x轴于AB两点 交y轴于点D 其中B点的坐标为(3,0) 1.求抛物线的解析 已知,如图抛物线y=ax^2+3ax+c(a>0)已知:如图,抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方 如图,顶点座标为(2.-1)的抛物线y=ax2+bx+c(a≠0)如图,顶点座标为(2.-1)的抛物线y=ax²+bx+c(a≠0)与y轴交与点C(0,3),与X轴交于A、B两点.(1)求抛物线的表达式.(2)设抛物线的对称轴与直线BC交 如图,抛物线Y=ax2-2ax-b(a 如图,抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积为18.(1)求抛物线的函数关系式;(2)若正比例函数y=kx的图象将四边形ABDC的面积分为1:2的两部 如图抛物线y=ax2-8ax+12a与x轴交A、B两点,P在y轴正半轴,PB与抛物线交于C,已知C是BP的中点,∠PBO=45°图在这1、求抛物线解析式2、若将该抛物线沿x轴或y轴方向平移,使平移后的抛物线以P为顶点, 如图,抛物线y=ax^2-2ax+c与x轴交于A,B两点与y轴交于C,且AB=4,OC=3OA,求抛物线的解析式 如图①,抛物线y=ax2+bx+c过原点,且当x=-3 2 时有最小值,并经过点A(-4,2),同时AB平行于x轴交抛物线如图①,抛物线y=ax2+bx+c过原点,且当x=-32时有最小值,并经过点A(-4,2),同时AB平行于x轴交抛物线 如图,已知抛物线Y=AX2+BX+4与X轴交于A.B两点,与Y轴交于点C,D为OC的中点 (2008•重庆)已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E, 如图,直线y=kx+b与抛物线y=ax2+bx+c交于(-1,1) 和(4,2)两点,则关于x的不等式 kx+b大于ax2+bx+c的解集是 如图抛物线y=ax2-5ax=4经过三角形ABC的三个顶点,已知BC平行于X轴,点A在x轴上,点C在y轴上,且AC=BC 如图,抛物线C1:Y=ax2+2ax+4与x轴交于A,B两点(点A在B的左侧),与y轴交于点C,M为此抛物线的顶点,若△ABC若△ABC的面积为12.(1)求抛物线解析式(2)动直线l从于直线AC重合的位置出发,绕点A顺时针旋 二次函数以图形的相似如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6), 抛物线y=ax2-4ax+c交x轴于A、B两点,交y轴于C点,点D(4,-3)在抛物线上,且四边形ABDC的面积