求解一次线性微分方程(x^2+1) dy/dx + (3x^3) y = 6x exp(-3/2 (x^2)); y(0) = 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 13:33:57
求解一次线性微分方程(x^2+1) dy/dx + (3x^3) y = 6x exp(-3/2 (x^2)); y(0) = 1
xJ@_e( jf2ܴFCL56SW"u`]*ھL.-Lĝ(9s*A-{Io+σl+Ni{/;}ʯ[G`hNW@ TIb0ZSi*#iڀ?$5gy|wvdh zߛˤwtã}y?='׽lw _ߍL7yV(+ -aX-Kkt%6X5B7J]7=u&BcxFjBeak ILF [pI,.0tI Jli3D-"\IaIVE#-иkkAu2Ǵ S2~R Zf

求解一次线性微分方程(x^2+1) dy/dx + (3x^3) y = 6x exp(-3/2 (x^2)); y(0) = 1
求解一次线性微分方程
(x^2+1) dy/dx + (3x^3) y = 6x exp(-3/2 (x^2)); y(0) = 1

求解一次线性微分方程(x^2+1) dy/dx + (3x^3) y = 6x exp(-3/2 (x^2)); y(0) = 1
这种方程的解法,一般的常微分方程书中都会提到.发图吧,但愿我的积分正确.