求过点P(3,2)且在两条坐标轴上的截距和为0的直线方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/11 05:56:19
求过点P(3,2)且在两条坐标轴上的截距和为0的直线方程是
xSN@YJ,|[l P(U¿L] N T ݹ4ss93W#Y 5ĉ3#g%\k7p]#wYk֠/> žVt4%!mWy9" K/:R,l)~Aa SG:}q(@RiYs^8Q՚sP)|Q=$pB nݐۼ +Sl|608O}=GceC0?V㶞"EՓ7@r @ n] dN7?SM.c#oOMBw x <9f0#S@}l]ZR+8s|h;iV:6}qs,8)ϯwxa; sQ+ΛVo2s

求过点P(3,2)且在两条坐标轴上的截距和为0的直线方程是
求过点P(3,2)且在两条坐标轴上的截距和为0的直线方程是

求过点P(3,2)且在两条坐标轴上的截距和为0的直线方程是
截距和为0即斜率为1
y=x-1

截距相等, 分为两种情况:
(1)截距不为0:
设截距式方程: x/a - y/a = 1, a为实数
化为x - y - a = 0
∵直线过点(3, 2)
∴ x = 3, y = 2满足方程:
-2 + 3 - a = 0
得 a = 1
所求的直线为 x - y - 1 = 0

全部展开

截距相等, 分为两种情况:
(1)截距不为0:
设截距式方程: x/a - y/a = 1, a为实数
化为x - y - a = 0
∵直线过点(3, 2)
∴ x = 3, y = 2满足方程:
-2 + 3 - a = 0
得 a = 1
所求的直线为 x - y - 1 = 0
(2)截距为0:
设直线过原点, 设方程为: y = kx, k为实数
同理, 代x = 3, y = 2入方程,
得 k = 2/3
所求的直线为 y = 2x/3
综合(1), (2),
过点p(3,2)且在两坐标轴上截距相等的直线方程是
x -y - 1 = 0 或 y = 2x/3

收起

y=x-1