怎么求反函数?在写数学整理,看到反函数,函数y=1+ln(x-1) (x>1)的反函数,要具体过程,就是看不懂!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 07:16:36
怎么求反函数?在写数学整理,看到反函数,函数y=1+ln(x-1) (x>1)的反函数,要具体过程,就是看不懂!
xWNG~zƑI.*RsUEQ{cm M 8`!6XM^ޅ̮x~28IUUdɻ3jEַ*ya$zyum ^Dbr//3 s?ys7lΟ{ޅ$Ea~}/KĆ'Vw4Fֲ+<8?gOYY$/ TTD:0?b[axSeɜ@p|fG8](FRRd(2së]?;s-\)d2f dN2wk;?V@e!&@t 1U]ŝ"#qŭ/;6(tvSyع6xgM E oDGx 8L,އ>t>&!ojj̩ Ή./ |l^hj濢WLa|Ѐ.tY"iN:4#p9'9oVxEgN1w`ͭY/J = ,+z4ݹ"Kr !gu{Gt#<^ӥBM UoρHmUpFyQY 3^C $׻Vdcğ8R>Q*#eBR;M>DY WwJ<*IXP#u嗼'k'ч:iCY^/5%mYubPڨԦ>ݗQEbLNdOByy8f϶7^]kXCۤLUTpiӵ%)=fB1)A<*axU ^΂yx`x&[D Կj3g IS܌אG=!LxHˑr9c0H5O4-G2;8xE(%/\iҞCQ4l$GIR990B2INZnb"Iz0c׀ꅌP-W2A2 'aN .|K>|Hnq{S$Utzv*F*bu i͐nNr{k6܏U^> EǑZG 8ZtڑoKh*i'&vZB Or@xLd<+kW_`&ֹ?X9ReGD7+;`pj| R7bAvZ-@g4aͶ~l9a&ze xwtH>%6nt9=}h8aSNg0!(Yʨ[iClf+ e_ >?ӏ㺰[ӳ&PÚ&6a Rh:E@O-=Տ/W/%rgjְ[}$5X$J36@+vm|B AūE2Aqi9 #ԶyA6U%{.U 8fh-aG*U` +&#;n`X3$7>0>

怎么求反函数?在写数学整理,看到反函数,函数y=1+ln(x-1) (x>1)的反函数,要具体过程,就是看不懂!
怎么求反函数?在写数学整理,看到反函数,
函数y=1+ln(x-1) (x>1)的反函数,要具体过程,就是看不懂!

怎么求反函数?在写数学整理,看到反函数,函数y=1+ln(x-1) (x>1)的反函数,要具体过程,就是看不懂!
y=1+ln(x-1),y∈R
=>y-1=ln(x-1)
=>x-1=e^(y-1)
=>x=1+e^(y-1)
=>函数y=1+ln(x-1) (x>1)的反函数y=1+e^(x-1) ,(x∈R)
1.反函数存在的条件.对于任意一个函数y=f(x),不一定有反函数.如y=x2 (x∈R),由y=x2,解得 ,对于每一个确定的函数值y,有两个x值与之对应,不符合函数定义,所以y=x2(x∈R)没有反函数.不难发现,只有当函数y=f(x)的对应法则f是从定义域到值域的一一映射时,它才存在反函数.函数若存在反函数,它的反函数是唯一的.
2.反函数也是函数.一个函数与它的反函数互为反函数,并且它们的定义域、值域互换,对应法则互逆.一个函数与它的反函数可以是两个不同的函数,也可以是同一个函数.如函数
3.在反函数概念的学习中,先后出现了三个函数记号——y=f(x),x=f-1(y),y=f-1(x),它们之间的关系是:在y=f(x)与x=f-1(y)中,字母x,y所表示的数量相同,取值范围相同,但地位不同.在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数.y=f(x)与x=f-1(y)互为反函数,它们的图象相同(由于两式中x,y所表示的量完全相同).
在y=f(x)与y=f-1(x)中,字母x,y的地位相同,即x是自变量,y是x的函数,但x,y表示的量的意义变换了,取值范围也互换了,即y=f(x)中x(或y)与y=f-1(x)中的y(或x)表示相同的量.y=f(x)与y=f-1(x)互为反函数,它们的图象关于直线y=x对称.
在y=f-1(x)与x=f-1(y)中,字母x,y的地位及其表示的量互相交换,但它们却是同一函数,都是y=f(x)的反函数.函数x=f-1(y)与y=f-1(x)是同一函数的理由是:它们的定义域相同,值域相同,对应法则一样.
4.反应函数的性质主要有:
(1)互为反函数的两个函数的图象关于直线y=x对称;
(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;
(3)一个函数与它的反函数在相应区间上单调性一致;
(4)偶函数一定不存在反函数,奇函数不一定存在反函数.若一个奇函数存在反函数,则它的反函数也是奇函数;
,其中A、C分别为函数f(x)的定义域、值域.
反函数的求法.
注意不要把f-1(x)理解为 ,防止把求反函数混为求倒数.f-1(x)表示f(x)的反函数,式子中的f-1表示对应法则,它与原来函数f(x)中的对应法则是互逆的关系.求反函数的过程主要是“解方程”的过程,即将y视为常数,将x看作未知数,用解方程的方法解出x=f-1(y),此时一定要注意表达式的唯一性.再将x,y的位置交换,得y=f-1(x).求出式子y=f-1(x)后,一般还要注明反函数的定义域.由于反函数的定义域必须与原来函数的值域相同,由式子f-1(x)确定x的取值范围未必合适(原因是在解方程的过程中,可能出现非同解变形),因此,标注反函数的定义域很有必要,而且须结合原来函数的值域确定反函数的定义域.例如,函数 的反函数的解析式为y=(x-1)2,由于原来函数的值域是y≥1,故反函数的定义域是x≥1,而不能是x∈R.求反函数的解题步骤可概括为“一解二换三注”.

反函数就是关于原点对称,比较方便的方法就是画图法,可以先把已知函数画出来,在画关于原点的对称图形,

第一步:从原函数解析式中,解出x用y表示,
y=1+ln(x-1)
y-1=ln(x-1)
x-1=e^(y-1)
x=e^(y-1) +1
第二步:对换x,y,并写出反函数的定义域.
从而,反函数为
y=e^(x-1) +1,x∈R