设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 20:18:47
设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆
x){n߳i;_l6? =_gkjkb}}:ڮ:FO?_Mm66=m$SD;ZPQLUYgÓKu4t 5mJu4DQl=ƮtX@GY0;Մ[di_\g4{N

设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆
设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆

设方阵A满足矩阵方程A^2+A-7E=0,证明A,A+E,A-2E均可逆,并求其逆
1,A(A+E)=7E,所以,A,A+E可逆,A^(-1)=(A+E)/7,(A+E)^(-1)=A/7
2,A^2+A-7E=0,A^2+A-6E=E,(A+3E)(A-2E)=E,所以A-2E可逆,(A-2E)^(-1)=(A+3E)