数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用数学归纳法证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:00:22
数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用数学归纳法证明
xQJAWfW7ׅA1L-#%0!5XQWW?&vf';Jԫo{{*EV`f#J K0(ÊJA.Uͅu~(l=K40Z$|_އsWhT ދ/ KS Y01T:K $p rT-5[ c!)9 f_%fѝ"z>]ޔ z9+f&( h}9

数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用数学归纳法证明
数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用数学归纳法证明

数列{an}中,a1=3/5,a(n+1)=an/(2an+1),1,计算a2,a3,a4的值 2,猜想an的表达式并用数学归纳法证明
a1=3/5,a(n+1)=an/(2an+1),
1.a2=(3/5)/(6/5+1)=3/11,
a3=3/17,
a4=3/23.
2.猜想an=3/(6n-1).
下面用数学归纳法证明:
n=1时公式显然成立.
假设n=k时ak=3/(6k-1),那么
a=[3/(6k-1)]/[6/(6k-1)+1]=3/(6k+5)=3/[6(k+1)-1],
即n=k+1时公式也成立.
∴对任意正整数n,公式都成立.

1/(an+1)=2an+1/an
1/an是等差,公差为2