用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊///

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 09:52:47
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊///
x){>em "gY^l++⌴*m 4}c= t>ٱɎU@w<_|VuMlN3tM _tjMR>m[RΆ^|bݾ{fQ =ÀJ^,_ 46Z7Fʧ5*5cu^TϦ/jj틙>b';(q

用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊///
用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.
快啊///

用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊///
假设:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac<0,而方程的解为x=[-b±根号(b^2-4ac)]/2a,因为b^2-4ac<0,所以x无解,有两个不相等的虚数根,但这与方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根相矛盾,所以假设错误,所以若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.

用反证法证明;若整数系数方程ax^2+bx+C=0(A0)有有理数,则A,B,C中至少有一个是偶数 用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0. 急!用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚根已知a,b,c都是实数且a≠0,用反证法证明方程ax^2+bx+c=0“虚根成对”,即方程不可能同时有一个实根和一个虚 用反证法证明:若整数系数方程ax^2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个数是偶数. 用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.快啊/// 用反证法证明:若ax^2+bx+c=0(a不=0)有两个不等实根,则b^2-4ac大于0 用反证法证明:若方程ax2+bx+c=0(a不等于0)有两个不相等的实数根,则 设二次函数f(x)=ax^2+bx+c(a不为0)中a,b,c均为整数,且f(0),f(1)均为奇数,用反证法证明方程f(X)=0无整数根 1.用反证法证明,若方程ax^2+bx+c=0(a≠0)有两个不相等的实数根,则b^2-4ac>0.2.用反证法证明:在△ABC中,若∠C是直角,则∠B一定是锐角. 用反证法证明ax^2+bx+c=0(a不等于0)有两个不相等的实数根,则b^2-4ac>0 用反证法证明:如果整系数二次方程ax^2+bx +c=0有有理数根,那么a,b,c至少有一个是偶数一定要用反证法哦, 已知a、b、c是互不相等的非零实数,用反证法证明三个方程ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0至少有一个方程有两个相异实根. 用反证法证明:若方程ax^2+bx+c=0(a不为0) 有两个不相等的实数根,则b^2-4ac>0.)这个题怎么做,我看了别人说吧方程化简请问怎么把这个方程化简,请化简一边给我看下 已知abc是互不相等的非零实数,求证ax^2+2bx+c=0,bx^2+2cx+a=0,cx^2+2ax+b=0至少有一个方程有两个相异实根用反证法证明 用反证法证明ax^2+bx+c=0有两个不相等的实数根,则b^2-4ac=0用反证法证明ax^2+bx+c=0有两个相等的实数根,则b^2-4ac=0 用反证法证明:若方程ax平方加bx加c等于0(a不等于0)有两个不相等的实数根,则b平方减4ac大于0.马上要, 用反证法证明:若方程ax2(平方)+bx+c=0(a≠0)有两个不相等的实数根,则b2-4ac>0用反证法证明:在三角形ABC中,如∠C是直角,则∠C一定是锐角..我在预习高1的内容 关于反证法方面的不太会 希望大家 求证关于x的方程ax²+bx+c=0有一个根为1的充要条件是a+b+c=0要求用反证法证明则反证法是将结论反成什么样子 我主要是要的这个