arcsinx+arctg1/7=π/4,则x=

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/03 10:14:27
arcsinx+arctg1/7=π/4,则x=
x)K,J.̫%Mtv̬I*+_`gC `< tYM[(H!X)H 5 S0EV֢c~ u0X^[ch8<ٽ*f 8 +Ѷ,o=O{=_dǮ{fMHW؂$Ać[ H 1T7(AǫYCv@\L+ $5`/W<8鞆u S>'}liS7( +I 1ٔm/nGE

arcsinx+arctg1/7=π/4,则x=
arcsinx+arctg1/7=π/4,则x=

arcsinx+arctg1/7=π/4,则x=
arcsinx+arctg1/7=π/4
tan(arcsinx+arctg1/7)=tan(π/4)=1
〔tan(arcsinx)+tan(arctg1/7)〕/
(1-tan(arcsinx)tan(arctg1/7)〕=1;
tan(arcsinx)+tan(arctg1/7)
=1-tan(arcsinx)tan(arctg1/7)
tan(arcsinx)+1/7=1-1/7 tan(arcsinx)
8tan(arcsinx)=6
tan(arcsinx)=3/4
令arcsinx=a,则sina=x
原式化简为:tana=3/4,
x=sina=3/5.

arcsinx=x
arctg1/7=1/7
x=π/4-1/7

arcsinx=x
arctg1/7=1/7
x=π/4-1/7
arcsinx+arctg1/7=π/4
tan(arcsinx+arctg1/7)=tan(π/4)=1
〔tan(arcsinx)+tan(arctg1/7)〕/
(1-tan(arcsinx)tan(arctg1/7)〕=1;
tan(arcsinx)+tan...

全部展开

arcsinx=x
arctg1/7=1/7
x=π/4-1/7
arcsinx+arctg1/7=π/4
tan(arcsinx+arctg1/7)=tan(π/4)=1
〔tan(arcsinx)+tan(arctg1/7)〕/
(1-tan(arcsinx)tan(arctg1/7)〕=1;
tan(arcsinx)+tan(arctg1/7)
=1-tan(arcsinx)tan(arctg1/7)
tan(arcsinx)+1/7=1-1/7 tan(arcsinx)
8tan(arcsinx)=6
tan(arcsinx)=3/4
令arcsinx=a,则sina=x
原式化简为:tana=3/4,
x=sina=3/5.

收起