在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n 设bn=an/n,求证bn+1-bn=1/2^n bn的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:34:37
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n 设bn=an/n,求证bn+1-bn=1/2^n bn的通项公式
xRJ@~[5ɣ6=BR c[`ԆΦoܛQvFkhĬb*! @wTgJ̤ 3-{,  SlW>|İOİcGkLhY$~=.vRx2v bq*Q)WEuE}~N|JD=],{].k !"ڹO'qQ남K RD &5&|K#rbk٦CZ3Y_4SGm,-w{>u(GFZ

在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n 设bn=an/n,求证bn+1-bn=1/2^n bn的通项公式
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n 设bn=an/n,求证bn+1-bn=1/2^n bn的通项公式

在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n 设bn=an/n,求证bn+1-bn=1/2^n bn的通项公式
an+1=(1+1/n)an+(n+1)∕2^n
两边同除以(n+1)得:a(n+1)/(n+1) =an/n+ 1/2^n
a(n+1)/(n+1)-an/n=1/2^n
因为bn=an/n,代入上式,
所以有bn+1-bn=1/2^n
因为a(n+1)/(n+1)-an/n=1/2^n
所以an/n-a(n-1)/(n-1)=1/2^(n-1)
…………
a3/3-a2/2=1/2^2
a2/2-a1/1=1/2
等式两边累加可得:
an/n-a1/1=1/2+.+1/2^(n-1)
所以bn=an/n=a1/1+1/2+.+1/2^(n-1)=2-1/2^(n-1)(等比数列求和).