f下1上2 [3x+(x^2+2)]dx 怎么算喔?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:59:55
f下1上2 [3x+(x^2+2)]dx 怎么算喔?
xn@_ŊTɑsǿUQ<hb F(, H*#QA nXۍ *7sjXk&N D kfQr:KߌoWWy&X~ĈE&b}0AK>7(9;gAOO?fEө]vPůÃ:k"XDX~`/O`!u,ÚT$D\^^{pHR+P7 n\J 2 G#[Љ"axl1}#H%[GϽtӜgʋnV:2gg&$|%c

f下1上2 [3x+(x^2+2)]dx 怎么算喔?
f下1上2 [3x+(x^2+2)]dx 怎么算喔?

f下1上2 [3x+(x^2+2)]dx 怎么算喔?
f下1上2 [3x+(x^2+2)]dx=3/2x^2﹢1/3x^3+2x|(下一上二)=28/3
(3/2x^2)’=3x ( 1/3x^3)’=x^2 ( 2x)’=2 然后代数算就好了

解:
∫[1,2](3x+x^2+2)dx
=∫[1,2]3xdx+∫[1,2]x^2dx+∫[1,2]2dx
=3/2x^2|[1.2]+1/3x^3|[1,2]+2x|[1,2]
=6-3/2+8/3-1/3+4-2
=9/2+7/3+2
=(27+14+12)/6
=53/6

由积分公式∫x^ndx=x^(n +1)/(n +1)可得原式=〔3x^2/2 x^3/3 2x〕带上下限2.1 结果为53/6.