设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:28:23
设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B
x){nӳ럶6?m]d.Z^~OG=l|>[u^o|6YNqٶyqٺN6IE_`gCw

设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B
设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B

设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B
用归纳法证明
首先,直接计算得 B^2 = nB
假设 B^k=n^k-1B
则 B^(k+1) = B^k B = n^k-1B B = n^k-1B^2 = n^kB

设B是元全为1的n阶(n>=2)矩阵,证明:B^k=n^k-1B 设A=(aij)和B=(bij)是n*n的n阶正定矩阵,证明:矩阵C=(aijbij)这个n*n的矩阵也是正定矩阵.会追加1-2倍的设A=(aij)和B=(bij)是n*n的n阶正定矩阵,证明:矩阵C=(aijbij)这个n*n的矩阵也是正定矩阵. 设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵 设n阶矩阵A的伴随矩阵为A* 证明:|A*|=|A|^(n-1) 设A,B为n阶矩阵,I为n阶单位矩阵,且A=(1/2)(B+I),证明A^2=A的充分必要条件是B^=I 设a.b均为n阶(n≥2)可逆矩阵,证明(AB)*=A*B* 设A为m*n矩阵,B为n阶矩阵,且R(A)=n,证明:(1)若AB=O,则B=O;(2)若AB=A,则B=E 设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I. 线性代数的几道题目~1-4为判断题并说明理由,5题是填空题~1.设A,B均为n阶对称方阵,则AB=BA.2.设a为n(n>2)阶非零列向量,A=aaT(aT为a的转置矩阵),则A可逆.3.设A为m*n矩阵,则AAT为对称矩阵.4.2n+1阶方阵A 求急!判断题 有关线性代数!1:设n阶矩阵A可逆,则对任意的n X m 矩阵B 有R(AB)=R(B)2:设A,B同为n阶矩阵,若AB=E 则必有BA=E3:设A为n阶方阵,若A的平方=0 则A=0 设A为N阶实矩阵,且有N个正交的特征向量,证明:1A为实对称矩阵;2存在实数k及实对称矩阵B,A+kE=B^2 设A,B为n阶矩阵,n大于等于2 且AB=0 为什么在A为可逆矩阵即r(A)=n的时候 B=0 设A、B均为n阶可逆矩阵,ABA=B^(-1),E为n的单位矩阵,证明R(E-AB)+R(E+AB)=n 关于逆矩阵的证明题设A和B分别是m*n和n*m矩阵,若AB=E(m),BA=E(n),求证m=n且B=A^(-1) (E(m)为m阶的单位矩阵,E(n)为n阶的单位矩阵,A^(-1)为A的逆矩阵) 设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵 设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0 设A,B为两个n维列向量,(A^T)B不等于0,矩阵C=A(B^T),矩阵Q=(q1,q2,...q(n-1),B)是正交矩阵,矩阵P=(q1,q2,...,q(n-1),A),证明(1)n维列向量q1,q2,...q(n-1)是矩阵C的特征向量(2)证明矩阵P为可逆矩阵(3)求P^(-1)CP 设A,B均为n阶矩阵,且AB=BA,证明: 1)如果A有n个不同的特征值,则B相似于对角矩阵;2)如果A,B都相似与对角矩阵,则存在非奇异矩阵P,使得P-1AP与P-1BP均为对角矩阵.