在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(s在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(sinA+sinB+sinC)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 02:10:09
在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(s在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(sinA+sinB+sinC)
x){:gœ/Ozwѓkum mI5 K8:9hk<혩QLe~dd[716)H;9H()99PLB hB"H!Ty [@~2 [$DM p>R$ۂlaO0 W$`!d>أ7z*a7/.H̳E<xA

在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(s在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(sinA+sinB+sinC)
在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(s
在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(sinA+sinB+sinC)

在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(s在三角形中,A=60°,b=1,S三角形ABC=sqrt(3),则(a+b+c)/(sinA+sinB+sinC)
S△ABC=1/2*b*c*sinA=√3
所以c=4
a^2=b^2+c^2-2bccosA=1+16-8*1/2=13 a=√13
又sinA/a=sinB/b=sinC/c
所以sinB=(b/a)*sinA sinC=(c/a)*sinA
所以sinA+sinB+sinC=sinA+(b/a)*sinA+(c/a)*sinA
=[(a+b+c)/a]*sinA
所以(a+b+c)/(sinA+sinB+sinC)=(a+b+c)/[(a+b+c)sinA/a]
=a/sinA
=√13/(√3/2)
=(2√39)/3