若tan(a+π/8)=2,则tan(a-π/8)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:35:14
若tan(a+π/8)=2,则tan(a-π/8)=
x){ѽ$1O#Q|ӎ@{:u!B6IE(/!<$5`-X$jFkj`X}hC]$) m!^d.şu6<ٽ (jQ! @o#$AAVp.kwFr-(4@wчM q4+/Զ`

若tan(a+π/8)=2,则tan(a-π/8)=
若tan(a+π/8)=2,则tan(a-π/8)=

若tan(a+π/8)=2,则tan(a-π/8)=
tan(a+π/8)
=tan(a-π/8+π/4)
=[tan(a-π/8)+tan(π/4)]/ [1-tan(a-π/8)tan(π/4)]
=[tan(a-π/8)+1]/[1-tan(a-π/8)]
因为tan(a+π/8)=2
所以[tan(a-π/8)+1]/[1-tan(a-π/8)]=2
所以tan(a-π/8)+1=2-2tan(a-π/8)
解得tan(a-π/8)=1/3

tan(a-π/8)=tan(a+π/8-π/4)=﹛tan(a+π/8)+tanπ/4﹜/1-tan(a+π/8)tanπ/4=1/3