2的6n-3次方+3的2n-1次方能被11整除不用数学归纳法证而是用二项式定理证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:04:07
2的6n-3次方+3的2n-1次方能被11整除不用数学归纳法证而是用二项式定理证
xUn"GPFv FQ,li8y0c4ۑ/n̯:GE_Y6+=y'ÓihnSx ~οI!K iH Kv&KvFx띩'$HX݄i݃'U!M[٬{p-$mj@g$+_e]kbޜxO V'P^ؠuV:"L4ItS#WH1?Kl}Y9GGraP?kt;OVD.ۺ Oz'ׅZGF#u9=洡iZF~-f9[P$D,iiCwAxdl%зAӆS IW.}N̛mmLa6|iRdDF@IO 3$c p4(;V f@n-YjL=N N>.ߔ&=eyܕ~翀%!0,+ `B'$~/@d/l+k,h!C|Ƞ8^}:['mk

2的6n-3次方+3的2n-1次方能被11整除不用数学归纳法证而是用二项式定理证
2的6n-3次方+3的2n-1次方能被11整除
不用数学归纳法证而是用二项式定理证

2的6n-3次方+3的2n-1次方能被11整除不用数学归纳法证而是用二项式定理证
证明X=2^(6n-3)+3^(2n-1)能被11整除
解一(最简):
8^(2n-1)==(-3)^(2n-1) mod 11
X==8^(2n-1)+3^(2n-1) 0 mod 11.(注:将上式移项,即得)
如果不习惯同余记号和mod运算,请看解二.
注:其中直接利用同余性质
(a+km)^n==a^n mod m(注意,k可以是负数;可用二项式定理证明,请自测,下面¥¥¥也会给出)
于是:
8^(2n-1)==(11-3)^(2n-1)==(-3)^(2n-1)==-3^(2n-1) mod 11
¥¥¥
证明:
(km+a)^n
=(km)^n+...+C(n,i)*(km)^(n-i)*a^i+...+n*(km)^(n-1)*a+a^n
=m*Y+a^n (注:当n是未知指数时,Y是n的多项式函数) (¥¥¥)
≡a^n mod m (为方便,≡也记作==)
解二:
(km+a)^n=m*Y+a^n (注:由二项式定理立即心算可得,要写过程的话,见上面¥¥¥)
于是,
8^(2n-1)=(11-3)^(2n-1)=11*k+(-3)^(2n-1)
于是X==8^(2n-1)+3^(2n-1)=11*k,X|:11
注:X|:11表示X被11整除,或者说11|X,11整除X.
事实上,¥¥¥是显而易见的,你说是吗?建议常常应用这个性质.
结合同余和模(mod)运算,可以写得极为简明,并且找到问题的核心所在.利用同余思想,立即会想到将8联系到-3,因为相对于模(除数11),是等效的.于是立即得到解法一,心算就能解决.
如果只考虑到二项式定理,还会考虑将8,3如何拆解,因而解法二还可能一下子想不出.
这个性质应当作为一个熟知的结论而直接应用,于是立即得解.心算就能解决.
解三:分解因式
利用公式
x^(2n-1)+y^(2n-1)
=(x+y)(x^(2n-2)y-x^(2n-3)yy+...+(-1)^(i-1)*x^(2n-1-i)*y^i+...+.)
易知
X=8^(2n-1)+3^(2n-1)=(8+3)*...,于是11|X.(注:我也常记为X|:11)

2^(6n-3)=2^[3*(2n-1)]=8^(2n-1)

求证:5的2次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除 求证5的二次方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除 请说明,5的平方*3的2n+1次方*2的n次方-3的n次方*6的n+2次方能被13整除 试说明52×3的2n+1次方×2的n次方-3的n次方×6的n+2的次方能被13整除 试说明25*3的2n+1次方*2的n次方-36*3的n次方*6的n次方能被13整除 试说明N=5的平方×3的2n+1次方×2的n次方-3的n次方-3的n次方×6的n+2次方能被13整除 试说明5²*3的2n次方-3的n次方*6的n+1次方能被19整除 试说明5²*3的2n次方-3的n次方*6的n+1次方能被19整除 用数学归纳法证明4的(2n+1)次方+3的(n+2)次方能被13整除 证明3的6n次方-2的6n次方能被35整除,n为任意正整数 求证:5的2次方乘3的(2n+1)次方乘2的n次方减3的n次方乘6的(n+2)次方能被13整除. 求证:5的2次方乘以3的2n+1次方乘以2的n次方减去3的n次方乘以6的n+2次方能被13整除   试说明:5的2次方 × 3的2n+1次方 × 2的n次方,减去 3的n次方 × 6的n+2次方能被13整除. 试说明:5的2次方 × 3的2n+1次方 × 2的n次方,减去 3的n次方 × 6的n+2次方能被13整除. 试说明5的二次方×3的2n-1次方×2的n次方-3的n次方×6的n+2次方能被13整除 说明5的平方乘3的2n+1次方减2的n次方乘3的n次方乘6的n+2次方能被13整除 2的6n-3次方+3的2n-1次方能被11整除不用数学归纳法证而是用二项式定理证 证明 6²X3的2n+1次方-2²X3的3n+2次方能被8整除