求和Sn=1+(1+1/2)+(1+1/2+1/4)+…+(1+1/2+1/4+…+1/2^(2n-1).有详细过程,谢谢.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 14:37:46
求和Sn=1+(1+1/2)+(1+1/2+1/4)+…+(1+1/2+1/4+…+1/2^(2n-1).有详细过程,谢谢.
x){餞<[Cm CmC}#M( &ڏ!\ ;N(OPSٜ=b:/6,"="}_`gCC7#4!i5Eү:^ tHL$o#I~qAb +

求和Sn=1+(1+1/2)+(1+1/2+1/4)+…+(1+1/2+1/4+…+1/2^(2n-1).有详细过程,谢谢.
求和Sn=1+(1+1/2)+(1+1/2+1/4)+…+(1+1/2+1/4+…+1/2^(2n-1).有详细过程,谢谢.

求和Sn=1+(1+1/2)+(1+1/2+1/4)+…+(1+1/2+1/4+…+1/2^(2n-1).有详细过程,谢谢.
1+1/2+1/4+.+1/2^(2n-1)=2-1/2^(2n-1). 所以Sn=2n-1/2-1/4-.1/2^(2n-1)=2n+1/2^(2n-1)-1