设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 06:19:14
设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0
x){n_NNգg^o|gVZqivEvi\]]sMR>Z l(%itTi[g]U]*5*JU Md%yڻYWWƪsuLxc~g v>cӎOmgkl1p@z6yv R

设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0
设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0

设x,y,z∈,R求证:x²+xz+z²+3y(X+y+z)≥0
令f(x)=x^2+z*x+z^2+3*y(x+y+z)=x^2+(z+3*y)*x+z^2+3y^2+3yz,即把y、z看成常量,根的判别式=(z+3*y)^2-4(z^2+3y^2+3yz)=-3(z+y)^2=0.证别.