请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 22:54:23
请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a
xSOK0*A-.~?I"9m2wPqSP C6mwW5)[A%ߟJŸ;Ua=V1r%kg ? W.Xr=ajD K~ bLLlu@ XʀfTU+oA9sW0yޠx+5Bm:363rl0LlE܆ +|?R,?qO@2r=eN L᪢xi@ΰEZaƒ.`Ư_oc#\j!iqӍ"xfjDJK  q66|Y ك#ȗcY>F^Xu|¡X˰h6?y:IV@ĉ[C,1,l"eudNN}{P tt׋LI

请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a
请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+
请教两道不等式证明题:
1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.
2、已知0小于等于a,b,c小于等于1,求证:a/(bc+1)+b/(ca+1)+c/(ab+1)小于等于2 .

请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a
1.不等式等价于xyz(xy(x+y)+yz(y+z)+zx(z+x)) ≥ 2(xy+yz+zx)².
由xyz = x+y+z,进一步等价于(x+y+z)(xy(x+y)+yz(y+z)+zx(z+x)) ≥ 2(xy+yz+zx)².
也即((x+y)+(y+z)+(z+x))(z²(x+y)+x²(y+z)+y²(z+x)) ≥ (z(x+y)+x(y+z)+y(z+x))².
易见这由Cauchy不等式立即得到.
2.由对称性,不妨设a ≤ b ≤ c.
则a/(bc+1)+b/(ca+1) ≤ a/(ab+1)+b/(ab+1) = (a+b)/(ab+1) = 1-(1-a)(1-b)/(ab+1) ≤ 1.
又c/(ab+1) ≤ c ≤ 1.
相加即得a/(bc+1)+b/(ca+1)+c/(ab+1) ≤ 2.

请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+请教两道不等式证明题:1、若x,y,z属于R+,且x+y+z=xyz,证明不等式(y+z)/x+(z+x)/y+(x+y)/z大于等于2(1/x+1/y+1/z)^2.2、已知0小于等于a 高中数学柯西不等式证明题x.y.z是正数 x+y+z=1证明:x/(y+2z)+y/(z+2x)+z/(x+2y) ≥1 【不等式证明】若x+4y+9z=1 求证(9/x+4/y+1/z大于等于100) 不等式证明 急 已知x,y,z 是正数.若 x/(x+2) +y/(y+2) +z/(z+2) =1求证 x^2/(x+2) +y^2/(y+2) +z^2/(z+2) >=1 一道高中不等式证明题已知正数x,y,z满足x+y+z=1求证:x^2/(y+2z)+y^2/(z+2x)+z^2/(x+2y)>=1/3 证明 (x+y+z)^2>3(xy+yz+zx)如题,不等式证明, 不等式的证明题x,y,z>0 证明2(x^3+y^3+z^3)>=x^2(y+z)+y^2(x+z)+z^2(x+y) 三角不等式证明证明sin(x+y)+sin(y+z)+sin(z+x)>sinx+siny+sinz+sin(x+y+z) 一道不等式的证明题,已知:(x2-1)(y2-1)(z2-1)=83 x,y,z>1求证:1/x+1/y+1/z≥1 一道高中数学不等式证明题若x>y>1 0 请教一道不等关系证明题若x>0,y>0,z>0,且x+y+z=a,求证:x^2+y^2+z^2≥(2/3)a 数学不等式题:x.y.z属于R+,xyz(x+y+z)=1 求(x+y)(y+z)最小值 用柯西不等式证明:如果x,y,z为正数,x+y+z=1,则x^2+y^2+z^2>=1/3 用柯西不等式证明:设正数x,y,z,满足x+y+z=1,求证:1/x+4/y+9/z≥36 证明题;柯西不等式已知x,y,z是正实数,求证:(z^2-x^2)/(x+y)+(x^2-y^2)/(y+z)+(y^2-z^2)/(z+x)>=0 一道高一不等式证明题已知x,y,z∈(0,1),证明1<xy+yz+xz ≤4/3 设x,y,z∈R+,xy+yz+xz=1,证明不等式:(xy)^2/z+(xz)^2/y+(yz)^2/x+6xyz≥x+y+zRt 设x,y,z>0,x+y+z=3,证明(x+y)/(xy(4-xy))≥4/(4+x+y) (用不等式解)只能用这种方法吗 能不能用不等式证明 就是高中范围的不等式第三小题(x+y)/xy(4-xy)+(y+z)/yz(4-yz)+(z+x)/zx(4-zx)≥2新年好运