在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 05:24:48
在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中
xT[OQ+ޚeִ$g/JBW1"+-*AZԠaEfny_ H"ƞsfroL\Yh.ʎm.|6nnߨnQcVn%!gG ZvD!$t2BC6gF " q>mpk,{?p+xO7.o掕p^l3}.έEf8`W;ʼM-l\ e C«}w֖' nimjgGOs0ul?ff$&1JE)R3jt(>;k# 'xr69=4$$>YItTfT5c%  dY14z2jXgR5N9EUHf"uZe6c)ݤ9}q B\,ph΍\NQZ\\1WE.ف|^7\Ȟǜl1 JQx.?M8 bH>7@S]`fgJuQ "R${s Yuhct5!M

在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中
在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断
在△ABE和△ACD中,给出以下四个论断:①AB=AC;
②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断作为题设,填入下面的“已知”栏,一个论断作为结论,填入下面的“求证”栏,使之组成一个真命题,并写出证明过程.
已知:如图,在△ABE和△ACD中,______.
求证:______.

在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中
已知:①AB=AC;②AD=AE④AD⊥DC,AE⊥BE
求证:③AM=AN
证明:因为AD⊥DC,AE⊥BE; 所以 角ADE=角AEB
因为 AD=AE
AB=AC
所以 △ADC全等于△AEB
所以 角DAC=角EAB 所以 角DAM=角NAE
因为 角ADE=角AEB
因为 AD=AE
所以 △ADM全等于△ANE
所以AM=AN

已知:①AB=AC ②AD=AE ;④AD⊥DC,AE⊥BE
求证△ABE和△ACD是全等三角形

已知:①AB=AC;②AD=AE④AD⊥DC,AE⊥BE
求证:③AM=AN
证明:因为AD⊥DC,AE⊥BE; 所以 角ADE=角AEB
因为 AD=AE
AB=AC
所以 △...

全部展开

已知:①AB=AC;②AD=AE④AD⊥DC,AE⊥BE
求证:③AM=AN
证明:因为AD⊥DC,AE⊥BE; 所以 角ADE=角AEB
因为 AD=AE
AB=AC
所以 △ADC全等于△AEB
所以 角DAC=角EAB 所以 角DAM=角NAE
因为 角ADE=角AEB
因为 AD=AE
所以 △ADM全等于△ANE
所以AM=AN

收起

已知:①AB=AC;②AD=AE④AD⊥DC,AE⊥BE
求证:③AM=AN
证明:因为AD⊥DC,AE⊥BE; 所以 角ADE=角AEB
因为 AD=AE
AB=AC
所以 △...

全部展开

已知:①AB=AC;②AD=AE④AD⊥DC,AE⊥BE
求证:③AM=AN
证明:因为AD⊥DC,AE⊥BE; 所以 角ADE=角AEB
因为 AD=AE
AB=AC
所以 △ADC全等于△AEB
所以 角DAC=角EAB 所以 角DAM=角NAE
因为 角ADC=角AEB
因为 AD=AE
所以 △ADM全等于△ANE
所以AM=AN

收起

如图 在△ABE和△ACD中,给出以下论断在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.请你从中选择三个论断为条件,一个论断作为结论,构造一个真命题,并给 在△ABE和△ACD中,给出以下四个结论……在△ABE和△ACD中,给出以下四个结论(1)AB=AC;(2)AD=AE;(3)AD⊥DC;(4)AM=AN;是以其中三个论断为条件,另一个论断作为结论,组成一个正确的推断, 在△ABE和△ACD中,给出以下四个论断:①AB=AC; ②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中 如图所示,在△ABE和△ACD中,给出以下四个论断AB=AC;AD=AE;BE=CD,∠DAM=∠EAN 选出三个题设 一个结论证明 初一几何题,快啊,来不及了在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③∠D=∠E;④AM=AN;试以其中三个论断为条件,另一个论断作为结论,组成一个正确的推断,并说明理由. 在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断作为题设,填入下面的“已知”栏,一个论断作为结论,填入下面的“求证”栏,使之组成一个 如图所示,在△ABE和△ACD中,给出以下4个论断:(1)AB=AC; (2)AD=AE; (3)AM=AN; (4)AD⊥DC,A如图所示,在△ABE和△ACD中,给出以下4个论断:(1)AB=AC;(2)AD=AE;(3)AM=AN;(4)AD⊥DC,AE⊥B 在△ABE与△ACD中,给出以下四个论断:①AB=AC ②AD=AE ③AM=AN ④AD⊥DC、AE⊥BC以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求知栏中,使之组成一个真命题,并写出证明过程已知 在△ABE与△ACD中,给出以下四个论断:①AB=AC ②AD=AE ③AM=AN ④AD⊥DC、AE⊥BC以其中三个条件为题设,填入已知栏中,一个论断为结论,填入下面求知栏中,使之组成一个真命题,并写出证明过程已知 在三角形ABC中已知tan(A+B)/2=sinC,给出以下四个论断在三角形ABC中,已知tan(A+B)/2=sinC,给出以下四个论断①,tanA/tanB=1 ②,0 如图,在△ABC和△ADE中,有以下四个论断:① AB=AD,② AC=AE,③ ∠C=∠E,④ BC=DE,请以其中三个论断为条件,余下一个论断为结论, 【三角函数恒等变换】在△ABC中,已知tan[(A+B)/2]=sinC,给出以下四个论断,其中正确的是?【论断】:①tanA·cotB=1 ②0<sinA+sinB≤sqrt2 ③sin^2 A+cos^2 B=1 ④cos^2 A+cos^2 B=sin^2 C【选项】:A.①③ B.②④ C. 1在△ABE,△ACD,中AB=AC,AD=AE,AD⊥DC,AM=AN试用其中三个论断为条件,另一个做结论,组成一个正确的推断 九年级数学题,答案要具体、完整如图,在△ABC中,点D、E分别在AB、AC上,给出5个论断:①CD⊥AB②BE⊥AC③AE=CE④∠ABE=30º⑤CD=BE(1)如果论断①、②、③、④都成立,那么论断⑤一定成立吗?为什么 在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断:() 1,tanA*cotB=1 2,0 如图,在△ABC中,点D、E分别在边AB、AC上.给出5个论断:①CD⊥AB ②BE⊥AC ③AE=CE ④∠ABE=30° ⑤CD=BE⑴从论断①、②、③、④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个 一道高一数学选择里的一个选项:在三角形ABC中,已知(tanA+B)/2=sinC,给出以下四个论断在三角形ABC中,已知(tanA+B)/2=sinC,给出以下论断1<sinA+sinB≤√2为什么是正确的sin(A+B/2)/cos(A+B/2),右边化成2sin(A 图中△ABE和△ACD都是等边三角形,△AEC和△ABD全等吗?如果要△ABE和△ACD全等,还需什么条件?