如题,证明当x>0时,e^x>1+x.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 08:39:17
x){:/7>t
;gӷUjW$T_`gCIOv/IӨд
V"`Zv`g
Ov/}ھ
O{>]4W@.AhFj`"<;>u
如题,证明当x>0时,e^x>1+x.
如题,证明当x>0时,e^x>1+x.
如题,证明当x>0时,e^x>1+x.
令f(x)=e^x-1-x
f'(x)=e^x-1
当x>0时f'(x)>0
所以函数单增
f(0)=0
因此当x>0时f(x)=e^x-1-x>0
即
e^x>1+x
证明当x>0时,有e^x>1+x+x^2/2如题...
如题,证明当x>0时,e^x>1+x.
证明不等式当x>0时,e^x>x+1
证明:当X不等于0时,e^x>1+x
证明:当x>0时,e^x>1十x
证明:当x>0时,e^[x/(1+x)]
证明:当X不等于0时,e^-x>1+x
证明:当X>1时,e^1/x>e/x
证明当x大于1时,e^x>e*x
用拉格朗日中值定理证明不等式 当x>0时,x*e^x>e^x-1
证明当x大于等于0时,In(1+x)>x/1+x如题,急.
证明题:当x不等于0时,有不等式e的x方>1+x
证明(1) 当x>1时,e^x>e*x (2)当x>0时,ln(1+x)
证明当x>0时,e^x-x>2-cosx
证明不等式,当x>e时,e^x>x^e
微积分证明题,证明:当x>1时,e2/x>e/x
证明题当x>0时这个式子成立当x>0时,(x+1)ln(1+x)+(x-1)e^x>x成立.
证明:当x>0时,e^x-1> (1+x)ln(1+x)