已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:38:03
已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)
x){}K}6uCmF럮dgYdGY-OA<1(mc&Pi_6LzhӎOv>_tOQMR>]/f/xcW=t6YgÓKbnGR]mtsa%˟ُ,dx5eCs {E@BwL{Q] m{_,_ 46z`@ @IH$فBsRW

已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)
已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)

已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1)
因为f(x)在[1,+∞)上单调递增
所以f(x)在[-1,-∞)上单调递减
所以x+2的绝对值大于2x-1的绝对值
所以(x+2)²>(2x-1)²
化简得3x²-8x+3<0
解得(4+2根号7)/3<x<(4-2根号7)/3

已知y=f(x)是定义域在R上奇函数,且在R上为增函数,求不等式f(4x-5)>0的解集 定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3)定义域在R上的函数f(x+y)满足f(x+y)=f(x)+f(y)+2xy (x,y属于R) 已知f(1)=2 求f(-3) 已知函数y=f(x)是定义域在R上的偶函数,在[2,6]上是减函数,比较f(-5)与f(3)大小 已知函数f(x)是定义域R上单调递减的奇函数,当x、y属于R时,都有f(x+y)=f(x)+f(y),f(1)=1,求f(x)在[-3,3]的值域. 已知函数y =f(x)在定义域R上是单调减函数,且f(a+1)>f(2a),求a的取值范围 已知函数y=f(x)是定义域在R上的偶函数,且在[1,+∞)上单调递增,则不等式f(2x-1) 已知f(x)是定义域在R星上的函数,对x,y属于R星,恒有f(xy)=f(x)+f(y),对x>1恒有f(x) 已知函数f(x)是定义域在R+上的减函数且满足f(xy)=f(x)+f(y),f(根号2)=1求f(1)的值 若f(x)+f(3-X) 定义域在R上的函数y=f(x),f=(-x),f=-f(x).y=-f(-x)的图像重合,他们的值域是 已知函数f(x)的定义域为R,并且对于任意x、y属于R满足f(x+y)=f(x)+f(y)(1)证明函数f(x)是奇函数(2)若f(x)在R上是减函数,且f(1)=-2,求f(x)在[-3,3]上的最大值和最小值 已知函数y=f(x)是定义域在R上的奇函数,且f(x)是减函数,求f(4^x-4)+ f [2^(x+1)-4^x]>0的x的集合 高一数学、已知函数y=f(x)是定义域在R上的奇函数,且f(x)是减函数,求f(4^x-4)+ f 乘[2^(x+1)-4^x]的x的集 已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y)且当x>0时,f(x)>0.判断函数在R上的单调性并证明 已知函数y=f(x)在定义域R上是单调减函数,且对任意x∈R.f(a+x)>f(x)恒成立 则实数a的取值范围是 已知函数f(x)是定义域在R上的偶函数,且当x y=f(x)的定义域是(-00,1]则y=f[log2 (x^2-3)]定义域(1)函数y=f(x)的定义域是(-00,1]则函数y=f[log2 (x^2-3)]定义域是多少(2)函数y=f(x)在R上的偶函数,在(-00,0)上是减函数,且f(-2)=0则使f(x) 已知f(x)是定义域在R上的函数,其图像关于y轴对称,且在[a,b](ab>0)上是增函数,证明y=f(x)在[-b,-a]上是减函数. 若函数f(x)=x的立方 x属于R,则函数y=f(-x)在其定义域上是单调递?函数