证明∫sin(x^2)dx=0.5√(π/2),积分区间为0到正无穷.

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/20 08:15:48
证明∫sin(x^2)dx=0.5√(π/2),积分区间为0到正无穷.
xTNA~BB+;nwM7_ٝ٥B+VcRb Tn)0wh:Sz+8lM1!z|9O'ˏiy{BfDqRVXr"46ʤ0Ef+ͥ/ ].i|ؓ.t"Ox4g Y /B~3"?^**;M&MA,#)饓 K{JRd_@rM@qS`]Eŀ1+4Z.XuTYG@F\WAPm;:(uVQq.Ehg\b,W#JTٶf+%r~Ov/΅dc8gs%?C 9̚gPMP^˜TWkW\ Ȳr1c&@H9\g Ȣm ~f&hK1IgN\,-q@AȤM{G75>|%[R;βY' Dƙn/&ô2'*IRf&@廸| -8Aa㦈Wf-6sSm9LKe»aH?-Cӵ=dYd\rG=:IkvR

证明∫sin(x^2)dx=0.5√(π/2),积分区间为0到正无穷.
证明∫sin(x^2)dx=0.5√(π/2),积分区间为0到正无穷.

证明∫sin(x^2)dx=0.5√(π/2),积分区间为0到正无穷.
点击查看大图,
若不清晰请先保存再查看

∫sin(x^2)dx
=(1/2)∫(1/x)sin(x^2)d(x^2)
=-(1/2)∫(1/x)d[cos(x^2)]
设y=cos(x^2),
0≤x<∞
-1≤y≤1
x=√arccosy
∫sin(x^2)dx=-(1/2)∫(1/x)d[cos(x^2)]
=-(1/2)∫(1/√arccosy)dy

f(t)=∫[0,+∞]sin(tx^2)dx
用拉普拉斯变换
F(s)=∫[0,+∞]f(t)e^(-st)dt
=∫[0,+∞]{∫[0,+∞]sin(tx^2)dx}e^(-st)dt
交换积分次序,先对t积分
F(s)=∫[0,+∞]dx∫[0,+∞]sin(tx^2)e^(-st)dt
=∫[0,+∞]x^2/(x^4+s^2)dx

全部展开

f(t)=∫[0,+∞]sin(tx^2)dx
用拉普拉斯变换
F(s)=∫[0,+∞]f(t)e^(-st)dt
=∫[0,+∞]{∫[0,+∞]sin(tx^2)dx}e^(-st)dt
交换积分次序,先对t积分
F(s)=∫[0,+∞]dx∫[0,+∞]sin(tx^2)e^(-st)dt
=∫[0,+∞]x^2/(x^4+s^2)dx
=π/(2√2)*1/√s
再取逆变换
1/√s的逆变换是1/√π*1/√t
故f(t)=√π/(2√2)*1/√t
t=1即为积分值
∫[0,+∞]sinx^2dx=f(1)=√(π/8)

收起