设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:17:51
设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________
x){n_fd9mqFqFڕ@:)P#.@ɎZ*u u܌etYӳysu,u3t357U8A5r354=iL ~y_;ЀxT`T?_`g3lQ2 4P;MD**igjIsSM[gb_ll bkRmm Q>eol_\g 

设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________
设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________

设m点是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的点,F1,F2为焦点,如果∠mF1F2=75 °,∠mF2F1=15°则椭圆的离心率为_______________
F1F2=2c
mF1+mF2=2a
mF1+mF2 = F1F2(sin15+sin75)=F1F2*(2sin45cos30)
=>
e=c/a=1/(2sin45cos30)=√6/3

设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(OA+OB),设椭圆方程为(y^2)/4+x^2=1,过点M(0,1)的直线L交椭圆于点A,B,O是坐标原点,点P满足OP=1/2(OA+OB)[其中OP,OA,OB均 设F1F2是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点,P为椭圆上一动点,M为PF1的中点,PF1=4,则|OM|=? 已知椭圆x^2/a^2+y^/b^2=1的离心率为1/2,且椭圆的中心关于直线x-3y-10=0的对称点在椭圆的右准线上(1)求椭圆方程(2)设A(M,0),B(1/m,0)(0<m<1)是x轴上的两点,过点A作斜率不为0的直线与椭圆交于M 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF(1)求点p坐标(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于PF(1)求点p坐标(2)设M是椭圆长轴AB上的一点M到直线AP的距离等于|MB|,求椭圆上的点到点M 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF(1)求点p坐标(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M 椭圆的数学题,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),经过点M(1,3/2),其离心率为1/2设直线l:y=kx+m(|k| 在平面直角坐标系XOY中,点P(a,b)(a>b>0)为动点,F1,F2分别为椭圆(x^2/a^2) +(y^2+b^2)=1的左右焦点,已知三角形F1PF2为等腰三角形(1) 求椭圆的离心率(我算好了,是1/2)(2)设直线PF2与椭圆相交于A、B两点,M是 点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左,右端点 ,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.(图 求用参数方程解一道椭圆设椭圆X^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2,长轴的一个端点与短轴的两个端点组成等边三角形.(问) 直线l经过点F2,倾斜角为45°,与椭圆交于A,B两点,M是椭圆上任 已知点p(4,4),圆 C(x-m)^2+y^2=5(m<3)与椭圆Ex^2/a^2 + y^2/b^2=1(a>b>0)有一个公共点A(1,3)F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切,1)求m的值与椭圆E的方程,2)设Q是椭圆E上的一个动点,求向量AP*向 已知椭圆R:x²/a²+y²/b²=1(a>b>0)的长轴长为4已知椭圆R:x²/a²+y²/b²=1(a>b>0)的长轴长为4,且过点(∨3,1/2)(1)求椭圆R的方程(2)设A、B、M是椭圆上的三点,若向量OM=3/5向量OA + 关于椭圆的 椭圆有如下性质:“若A、B、C是椭圆椭圆有如下性质:“若A、B、C是椭圆x^2/m^2+y^2/n^2=1上的三点,设直线AB、AC、BC的斜率分别是k1、k2、k3,过A点的椭圆切线的斜率是k4,那么k1+k2=0的充 1.点A、B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于MB的绝对值,求椭圆上 如图所示,已知点M是椭圆x^2/a^2+y^2/b^2=1..求参数方程解法, 已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,PA垂直于PF.(1)求点p的坐标(2)设M是长轴AB上的一点,M到直线AP的距离等于|MB|,求M到椭圆上点 设椭圆E:x^2/a^2+y^2/b^2=1过点M(2,根号2),N(根号6,1)两点,O为坐标原点 已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足向量OA+向量OB=已知椭圆C:X^2/2+Y^2=1.若过点M(2,0)的直线与椭圆C交于两点A、B,设P为椭圆上一点,且满足 向量O