高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 21:45:11
高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1
xN@_c!iL8xГ'g$RI A@! *堤ԗm'^E'~e}!Hh`4`7~ڣ@Wd(P%IBFnp{4 ,g7Y[LT gS+:Y8V@g'CA;HM;`?iۤ]-Lˈo8)\AYSLek :);4S@ PTR59{0Io["[<ݣa"7Mb H>0W1zxjVw?EpWe'fKYgI뷴6BؽJˡG kǩD2VE

高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1
高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)
高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)是C上次数大于0多项式,则F(R1),F(R2),...F(RN)是F(A)的全部特征根.(2)若A可逆,1/R1,1/R2,...,1/RN是A^-1的全部特征根

高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1
因为A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算),
所以A的Jordan标准形的主对角线上元素为R1,R2...,RN.
(1) 若F(X)是C上次数大于0多项式,则F(A)的Jordan标准形的主对角线上元素为
F(R1),F(R2),...F(RN)
可见F(R1),F(R2),...F(RN)是F(A)的全部特征根.
(2) 若A可逆,则R1,R2...,RN均非零,且A^-1的Jordan标准形的主对角线上元素为
1/R1,1/R2,...,1/RN,
可见1/R1,1/R2,...,1/RN是A^-1的全部特征根.

高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1)若F(X)F(R1)高等代数 A是复数域上的一个N阶矩阵,R1,R2...,RN是A的全部特征根(重根按重数计算) 证(1 A是复数域上的m×n矩阵,若方程AX=B无解,求证A'AX=A'B一定有解请用用线性代数或高等代数的理论证明 求解一道高等代数关于矩阵的秩的证明题设A是一个n阶可逆方阵,向量α、β是两个n元向量.试证明:r(A+αβ′)≥n-1. 高等代数的:设A是m × n阶实矩阵,证明:秩(A`A)=秩(A) 高等代数题 A是n阶实对称矩阵,如下图 高等代数的一道题目,涉及多项式互素和矩阵运算,矩阵的秩.设数域F上的多项式h(x)和g(x)互素,即(h(x),g(x))=1,又f(x)=h(x)g(x),若存在n阶实矩阵A使得f(A)=0,证明:r (g(A)) + r (h(A)) = n. 求解一个高等代数题:证明:n级矩阵A与所有n级矩阵可交换,那么A一定是数量矩阵 高等代数--证明--在数域p上,任意一个对称矩阵都合同于一个对角阵在复数域上证明.不仅仅是实数域. 矩阵的秩与特征值的题目求解设n阶矩阵A的秩满足r(A+I)+r(A-I)=n,且A不等于I,则A一定有特征值().高等代数的一道填空题,请注明解题思路.我也认为肯定有的特征值是-1,xiongxionghy和宇智晓波应 高等代数若矩阵A的最小多项式为x(x-1)的因式,为什么他的特征多项式为x∧r(x-1)∧n-r 关于一道高等代数求X通解的问题设A和B都是N阶方阵,且r(A)+r(B)=n,试求矩阵方程AXB=O的通解. 高等代数怎么证明复数矩阵A与他的共轭矩阵,他俩的行列式也互为共轭 高等代数的问题:谁能给矩阵A,B(A,B属于n阶矩阵)定义个内积,使这个n阶矩阵是欧式空间?急, 求一道高等代数题解详细过程.n=4,我求不出r(A),也求不出特解.希望给出增广矩阵经行变换后的最终矩阵.求数域K上下列线性方程组的一个特解和导出方程组的一个基础解系,然后用它们表出方 高等代数 矩阵 方程组A为m*n型矩阵,B为n*m型矩阵,r(A)=m,BA=0,则B=? 高等代数矩阵证明题A为nxn矩阵,rankA=r,证:存在一个nxn可逆矩阵P使PAP∧(-1)的后n-r行全为0(只用行列式、线性相关性、矩阵运算的知识,后面还没学到)感觉给右乘P∧-1没什么用啊,只要求后n- 一个高等代数问题?关于矩阵矩阵A是一实数矩阵,求证秩(AA')=秩(A) 如何证明n阶矩阵的特征多项式等于其(特征矩阵)不变因子的乘积北大《高等代数》第8章、第4节,P341上说:n阶矩阵的特征矩阵的秩一定是n,因此n阶矩阵的不变因子总是有n个,并且,他们的乘