设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m求解!急!在线等!什么意思??A(1.11....1)T是啥?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 19:44:27
设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m求解!急!在线等!什么意思??A(1.11....1)T是啥?
xQJ0PVrAo}&p)2QHQZ:m//IO)"rHwIDsn\!OaSκL v򲵒U񁺿3 zB>u >< D+c UB`1\DjZK[ZN#k7|[iQ5IP>a/U{7dAzy;4rT aRqy0]-e*0 ^Hs؟L =k8?V

设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m求解!急!在线等!什么意思??A(1.11....1)T是啥?
设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m
求解!急!在线等!
什么意思??A(1.11....1)T是啥?

设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m求解!急!在线等!什么意思??A(1.11....1)T是啥?
每一行元素之和为a
则A(1,1...1)T=a(1,1...1)T 所以A^m(1,1...1)T=a^m(1,1...1)T即
A^m的每一行元素之和为a^m
(1,1...1)T是个列向量,每个元素都是1 A乘以这个列向量得出的就是A的每行元素和

设A为n阶矩阵,且每一行元素之和为a,证明A^m的每一行元素之和为a^m求解!急!在线等!什么意思??A(1.11....1)T是啥? 设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m. 设A是n阶可逆矩阵 若A的每一行元素之和为c 求证A^-1每一行元素之和1/c 两道线性代数题1、设A为n阶矩阵,且每一行元素之和都等于常数a,证明A^m(m为正整数)的每一行元素之和为a^m.2、设A是3阶可逆矩阵,将A的第一行与第三行互换后所得到的矩阵记为B.证明:B可逆 设n阶方阵A的行列式为a,且每一行元素之和为b(b不为0),则A的第n列元素的代数余子式子之和是多少?最好有图. 请教一道线性代数题设A为n阶方阵,且每一行元素之和都等于常数a,证明A的m次方(m为正整数)的每一个元素之和为a的m次方. 设A为可逆矩阵,且每行元素之和都有等于常数a≠0,证明A-1 (-1为)A右上角的 的每一行元素之和都等于a-1a≠0,证明A-1 (-1为)A右上角的 的每一行元素之和都等于a-1 (a-1 的-1 为 a右上角的-1) 设n阶方阵A的行列式为a,且每一行元素之和为b(不等于0),则A的第n列元素的代数余子和是? 设A是n阶矩阵,|A|=2,且A中各行元素之和均为1,求A中毎列元素的代数余子式之和 设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组Ax=0的通解为? 设A为n阶矩阵,且设A为n阶矩阵,且A中每行元素之和都是0,如果秩r(A)=N-1,则齐次方程组Ax=0的通解是 设N阶矩阵A的各行元素之和均为零,且R(A)=N-1,则线性方程组AX=0的通解为? 设n阶行列式D中每一行的元素之和为零,则D= 设n阶可逆矩阵A中每行之和元素为常数a,证明A^(-1)的每行元素之和为a^(-1) 3阶矩阵A的每一行元素之和之和为3,且 1 -1 { 0 } { -1 }是AX=0的解,求A的特征值与特征向量 1 0 矩阵方面的题,急用!1、设A是m*n阶实矩阵,且AT=0,则有A=______.(T在A的右上角,是小T)2、若方阵A满足A2-A-2I=0,则A的逆矩阵为_______.(第一个A2的2,在右上角是平方的意思!)3、设n阶矩阵A的每一行n个元素 设n阶矩阵A的任意一行的元素之和都是a 证明a是矩阵A的一个特征值 求a对应的特征向量 关于实对称矩阵的特征值求行列式的问题设A为n阶实对称矩阵且A的主对角线上的元素之和等于正整数N,求|E+2A|的最大值.